
Reprinted from

AKCE
INTERNATIONAL JOURNAL

OF
GRAPHS AND COMBINATORICS

AKCE Int. J. Graphs Comb., 10, No. 3 (2013), pp. 317-325

The partition dimension for a subdivision of
homogeneous caterpillars

Amrullah, Hilda Assiyatun, Edy Tri Baskoro,
Saladin Uttunggadewa and Rinovia Simanjuntak

Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Science

Institut Teknologi Bandung (ITB)

Jalan Ganesa 10 Bandung 40132 Indonesia

e-mail: amrullah@students.itb.ac.id, {hilda,ebaskoro,s uttunggadewa,rino}@math.itb.ac.id



AKCE Int. J. Graphs Comb., 10, No. 3 (2013), pp. 317-325

The partition dimension for a subdivision of
homogeneous caterpillars

Amrullah, Hilda Assiyatun, Edy Tri Baskoro,
Saladin Uttunggadewa and Rinovia Simanjuntak

Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Science

Institut Teknologi Bandung (ITB)

Jalan Ganesa 10 Bandung 40132 Indonesia

e-mail: amrullah@students.itb.ac.id, {hilda,ebaskoro,s uttunggadewa,rino}@math.itb.ac.id

Abstract

The concept of graph partition dimension was introduced by Chartrand et al. (1998).
Let G = (V, E) be a connected graph. For every v ∈ V (G) and L ⊆ V (G), define the
distance from v to L as d(v, L) = min{d(v, w)|w ∈ L}. Let Π = {L1, L2, · · · , Lk} be
a partition of V (G). The representation of a vertex v with respect to Π is defined as
r(v|Π) = (d(v, L1), d(v, L2), · · · , d(v, Lk)). The partition Π is called a resolving partition of
G if all representations of the vertices are distinct. The partition dimension of a graph G
can be defined as the cardinality of a minimum resolving partition Π of G.

Let e ∈ V (G) and k ≥ 1. The subdivision S(G(e; k)) of a graph G on e is a graph

obtained from graph G by replacing edge e with a path on k + 2 vertices. In this paper,

we determine the partition dimension of S(G(e; k)) with G ' C(m; r) is a homogeneous

caterpillar. We show that pd(S(G(e; k))) = pd(G) for almost all values of m, r and k.
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1. Introduction

The concept of the metric dimension of a graph was introduced independently by
Slater [9] and Harary and Melter [6]. Let G = (V,E) be a connected graph. For
v, w ∈ V (G) and A ⊆ V (G), the distance d(v, w) from vertices v and w is the length
of a shortest path from v to w. The distance d(v,A) from vertex v to A is defined
as min {d(v, a)|a ∈ A}. The representation r(v|A) of v with respect to A is the vector
(d(v, a1), d(v, a2), · · · , d(v, ak)) if A = {a1, a2, · · · , ak}. The set A is called a resolving set
of G if r(v|A) 6= r(w|A) for all distinct v, w ∈ V (G). The metric dimension β(G) of G
is the cardinality of a minimum resolving set. One of variants of this concept, namely par-
tition dimension, was then introduced by Chartrand et al. [2]. Let Π = {L1, L2, · · · , Lk}
be a k-partition of V (G). The representation of a vertex v with respect to Π, denoted
by r(v|Π) , is the vector (d(v, L1), d(v, L2), · · · , d(v, Lk)). The partition Π is called a
resolving partition of G if r(w|Π) 6= r(v|Π) for all distinct vertices in G. Two vertices
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u, v in G are said to be distinguishable if there exists a partition class L such that
d(u, L) 6= d(v, L) . In this case, vertices u and v are also called distinguished by L . A
vertex v ∈ G is called a dominant vertex if the distance from v to any other partition
class induced by a resolving partition in G is 1. The partition dimension pd(G) of G is
the smallest integer k such that G has a resolving k -partition. If two distinct vertex u
and v are in the same partition class under Π , then we write u ∼Π v, otherwise u �Π v.

Finding the partition dimension of a general graph is a NP-complete problem. So,
there is no efficient algorithm to determine the partition dimension of a general graph.
Therefore, many researchers restrict their study in finding the partition dimension of
graphs for certain classes.

Chartrand et al. [3] showed that path Pn with n ≥ 2 is the only graph G with
pd(G) = 2 . The complete graph Kn is the only graph G with pd(G) = n. Furthermore,
they show that the graphs K1,n−1,Kn − e and K1 + (K1 ∪Kn−2) are the only graphs G
on n vertices with pd(G) = n − 1. Tomescu [7] showed that there are 23 graphs having
pd(G) = n− 2.

The partition dimension of a graph produced by a binary graph operation has been also
considered. For instance, Baskoro and Darmaji [1] determined the partition dimension of
the corona product of two graphs. For wheels, Tomescu et al. [8] gave the lower and upper
bounds of the partition dimension of wheels Wn, namely d(2n)1/3e ≤ pd(Wn) ≤ p + 1,
with p be a smallest prime such that p(p− 1) ≥ n. For 3 ≤ n ≤ 20, they gave the exact
values of their partition dimensions.

There are many open problems in determining the partition dimension of graphs. One
of them is finding this value for an arbitrary tree. Until now, there is no explicit formula
known for the partition dimension of a general tree. However, for some particular classes
of trees for instance paths [3], caterpillars [5], firecrackers and banana trees [4], their values
are known. Chartrand et al. [2] showed that the partition dimension of double star Sm,n

depends on their maximum degree. Moreover, they also derived the lower and upper
bounds of a caterpillar, namely a tree having the property that the removal of its leaves
results a path. In this paper, we present the partition dimension of a subdivision of a
homogeneous caterpillar. Note that the subdivision of a tree is also a tree.

2. Previous Lemmas

This lemma is very useful in determining our main results.

Lemma 2.1. [2] Let G be a connected with a resolving partition Π. If d (u, w) = d(v, w)
for all w ∈ V (G)− {u, v} , then vertices u, v must be in distinct partition classes of Π.

The following result is a direct consequence of Lemma 2.1

Corollary 2.2. [2] If connected graph G has a vertex having k leaves, then pd(G) ≥ k.
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For integers m,n1, n2, · · · , nm ≥ 2, define a caterpillar C(m;n1, n2, · · · , nm) as a graph
obtained by attaching ni vertices to each vertex vi of the path Pm, for i ∈ [1,m]. The
path Pm in C(m;n1, n2, · · · , nm) is called the backbone of the caterpillar. All vertices of
degree one are called leaves. All leaves attached to vi are labeled by wi1, wi2, · · · , wini .
Edges viwij and vivi+1 are called pendant and backbone edges, respectively. If n1 = n2 =
· · · = nm = r, then the caterpillar is called a homogeneous caterpillar, and it is denoted
by C(m; r). Darmaji et al. [5] gave the partition dimension of a homogeneous caterpillar
in the following theorem.

Theorem 2.3. [5] Let G ≈ C(m, r) with r ≥ 3,m ≥ 2. Then,

pd(G) =
{

r if r ≤ m,
r + 1 otherwise.

3. Main Results

In this section, we determine the partition dimension of a subdivision graph of a homo-
geneous caterpillar C(m, r). Let G = (V,E) be a connected graph and e ∈ E(G). The
subdivision of a graph G on the edge e , denoted by S(G(e; k)), is a graph obtained from
the graph G by replacing edge e with a path on k + 2 vertices. The internal vertices of
the path replacing edge e are called subdivision vertices in S(G(e; k)). The subdivision
vertices of S(G(e; k)) are labelled by x1, x2, · · · , xk.

Lemma 3.1. Let G ' C(m; r1, r2, · · · , rm), r = max{r1, r2, · · · , rm}, and r ≤ m. Let
e = vavb be a backbone edge of G , for some a, b ∈ [1,m] . Let Π be a resolving r -
partition of S(G(e; k)) with k ≥ 2. Let (va, x1) ∈ E(S(G(e; k)) .
(i) If vertex va has r leaves, then x2 �Π va and x1 �Π x2.
(ii) If vertex vb has r leaves, then xk−1 �Π vb and xk �Π xk−1.

Proof. Let Π be a resolving r -partition of S(G(e; k)). Since vertex va has r leaves
wa1, wa2, wa3, · · · , war , then by Lemma 2.1, wa1, wa2, wa3, · · · , war must be in distinct
partition classes. Furthermore, there are (not necessarily distinct) integers p, q ∈ [1, r]
such that va ∼Π wap and x1 ∼Π waq.

(i) To show the first case, assume that x2 ∼Π va . But, this implies that x1 ∼Π wai

for some i ∈ [1, r] and r(wai|Π) = r(x1|Π), a contradiction. Therefore x2 �Π va .
But, this implies that x1 �Π x2. Since otherwise, there exists i ∈ [1, r] such that
r(wai|Π) = r(x1|Π), a contradiction.

(ii) The second case can be proved similarly.
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Lemma 3.2. Let G ' C(m; r1, r2, · · · , rm), r = max{r1, r2, · · · , rm}. Let va and vb

be two vertices adjacent to r leaves, respectively. Let Π be a resolving r -partition of
S(G(e, k)) with e is a backbone edge incident to va and (va, x1) ∈ E(S(G(e; k)), k ≥ 2 .
If x2 ∼Π vb and va �Π vb , then va �Π x1.

Proof. Let Π be a resolving r -partition of S(G(e; k)). Since vb has r leaves, there is a
leaf wbs such that x1 ∼Π wbs for some s ∈ [1, r]. Assume that va ∼Π x1. Since x2 ∼Π vb

and va �Π vb , then we have r(was|Π) = r(x1|Π), a contradiction. Thus, va �Π x1.

Lemma 3.3. Let G ' C(2, 3). If e is a backbone edge of G and k ≥ 1 then

pd(S(G(e; k))) =
{

pd(G) + 1 if k = 4,
pd(G) otherwise.

Proof. From [5], we know that pd(G) = 3 with Π = {L1, L2, L3} is a resolving partition of
G where L1 = {v1, w11, w21}, L2 = {v2, w12, w22}, and L1 = {w13, w23}. Now, consider
the following two cases:

Case 1. k = 4.

We will show that pd(S(G(e; 4))) ≥ pd(G) + 1 = 4. For a contradiction, let
pd(S(G(e; 4))) = 3 and Π′ = {L′

1, L
′
2, L

′
3} be a resolving partition of S(G(e; 4)). Without

loss of generality, let vertices v1 ∈ L′
1 and v2 ∈ L′

2. By Lemma 3.1, x2 ∈ L′
2 or x2 ∈ L′

3.
Now, we consider the following two subcases.

Subcase 1.1 : x2 ∈ L′
2.

By Lemmas 3.1 and 3.2, we have x1 ∈ L′
3. Since v2 ∈ L′

2, by Lemma 3.1, we obtain
x3 ∈ L′

1 or x3 ∈ L′
3. Clearly that x3 /∈ L′

1 otherwise r(v2|Π′) = r(x2|Π′) , so x3 ∈ L′
3 .

By Lemma 3.1, x4 must be in L′
1 or L′

2 . If x4 ∈ L′
1 , then we have r(x4|Π′) = r(v1|Π′).

If x4 ∈ L′
2 , then we have r(x4|Π′) = r(x2|Π′). This implies that x2 /∈ L′

2.

Subcase 1.2 : x2 ∈ L′
3.

By Lemma 3.1, we have x1 ∈ L′
2 or x1 ∈ L′

1. If x1 ∈ L′
2 , then r(x1|Π′) = r(v2|Π′). If

x1 ∈ L′
1 , then we consider vertices x3 and x4 in partition class of Π′ . Since v2 ∈ L′

2,
by Lemma 3.1, x3 /∈ L′

2 and x3 �Π x4, so we have four subcases for x3 and x4 namely
a) x3 ∈ L′

1 and x4 ∈ L′
2, and so r(x3|Π′) = r(v1|Π′). b) x3 ∈ L′

1 and x4 ∈ L′
3, and so

r(x1|Π′) = r(x3|Π′). c) x3 ∈ L′
3 and x4 ∈ L′

1, and so r(x3|Π′) = r(v13|Π′). d) x3 ∈ L′
3

and x4 ∈ L′
2, and so r(x3|Π′) = r(v23|Π′). These imply that x2 /∈ L′

3. By Subcases 1.1
and 1.2, we conclude that pd(S(G(e; k)) ≥ 4.

Furthermore, let Π′ = {L′
1, L

′
2, L

′
3, L

′
4} be a partition of S(G(e; k)) where L′

i = Li for
i ∈ {1, 2, 3}, and L′

4 = {x1, x2, x3, x4}. If u, v are non subdivision vertices of S(G(e; k)) ,
then clearly r(u|Π′) 6= r(v|Π′) since r(u|Π) 6= r(v|Π).

If u, v are subdivision vertices of S(G(e; k)) , then u and v are distinguished by L′
1

or L′
2, so r(u|Π′) 6= r(v|Π′). This implies that Π′ is a resolving partition of S(G(e; k)).
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So, pd(S(G(e; k))) ≤ pd(G)+1 = 4. As a consequence, we have pd(S(G(e; k))) = pd(G)+
1 = 4.

Case 2. k 6= 4.

We will show that pd(S(G(e; k))) = pd(G) = 3. Let Π′ = {L′
1, L

′
2, L

′
3} be a partition

of V (S(G(e; k))).

For k = 1, define L′
1 = L1, L′

2 = L2 and L′
3 = L3 ∪ {x1}. For k = 2, define L′

1 =
L1 ∪ {x1}, L′

2 = L2 and L′
3 = L3 ∪ {x2}. For k ≥ 3 and k 6= 4, define L′

1 = L1 ∪ {x1},
L′

2 = L2 ∪ {xk} and L′
3 = L3 ∪ {x2, x3, · · · , xk−1}.

For k = 1, 2, 3 , it is clear that r(u|Π′) 6= r(v|Π′) for any distinct vertices u and v.
Now consider k ≥ 5. If u, v are any two subdivision vertices, then r(u|Π′) 6= r(v|Π′)
because u, v are distinguished by either L′

1 or L′
2. Now, let u be a subdivision vertex

and v be a non subdivision vertex. If u = x1 or u = xk , then u, v are distinguished by
either L′

3 or L′
2. If u = xi for some i ∈ [2, k − 1 ], then u, v are distinguished by either

L′
1 or L′

2. This implies that r(u|Π′) 6= r(v|Π′). Therefore, pd(S(G(A; k))) = pd(G) = 3
for k ∈ [1, 3] or k ≥ 5.

Lemma 3.4. Let G ' C(3; 3). If e is a backbone edge of G , then pd(S(G(e; k))) =
pd(G) + 1 , for k ≥ 1 .

Proof. From [5], we know that pd(G) = 3 . Let Π = {L1, L2, L3} be a resolv-
ing partition of G , where L1 = {v1, w11, w21, w31}, L2 = {v2, w12, w22, w32} and
L3 = {v3, w13, w23, w33}. We will show that pd(S(G(e; k)) ≥ pd(G) + 1 = 4.

For a contradiction, assume that Π′ = {L′
1, L

′
2, L

′
3} is a resolving partition of

S(G(e; k)). Let e = v1v2 and without loss of generality assume v1 ∈ L′
1, v2 ∈ L′

2,
and v3 ∈ L′

3 (since they are dominant vertices and must be in different partition classes).

For k = 1 . If x1 ∈ L′
1 , then r(x1|Π′) = r(v2i|Π′) for some i . If x1 ∈ L′

2 , then
r(x1|Π′) = r(v1i|Π′) for some i . If x1 ∈ L′

3 , then r(x1|Π′) = r(v3|Π′), a contradiction.
Therefore, pd(S(G(e; k))) ≥ 4 for k = 1 .

For k ≥ 2 . By Lemma 3.1, x2 must be in either L′
2 or L′

3. If vertex x2 ∈ L′
2 , then

by Lemmas 3.1 and 3.2, we must have x1 ∈ L′
3 ; so r(x1|Π′) = r(v3|Π′). This implies that

x2 ∈ L′
3 . However, by Lemmas 3.1 and 3.2, we must have x1 ∈ L′

2, so r(x1|Π′) = r(v2|Π′),
a contradiction. Therefore, pd(S(G(e; k))) ≥ 4 for k ≥ 2 .

Now, we will show pd(S(G(e; k))) ≤ pd(G) + 1. To show this, consider the par-
tition Π′ = {L′

1, L
′
2, L

′
3, L

′
4} of S(G(e; k)) where L′

i = Li for i ∈ {1, 2, 3}, and
L′

4 = {x1, x2, · · · , xk}. If u, v are two non subdivision vertices of S(G(e; k)) , then
clearly r(u|Π′) 6= r(v|Π′) since r(u|Π) 6= r(v|Π). If u, v are two subdivision vertices of
S(G(e; k)) , then u and v are distinguished by L′

1 or L′
2, so r(u|Π′) 6= r(v|Π′). This im-

plies that Π′ is a resolving partition of S(G(e; k)). Thus pd(S(G(e; k))) ≤ pd(G)+1 = 4.
As a consequence, pd(S(G(e; k))) = pd(G) + 1.
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Lemma 3.5. Let G ' C(m; r), r ≥ 3 and m = r + 1. If e is a pendant edge of G ,
then pd(S(G(e; k))) = pd(G)− 1.

Proof. From [5], we know that pd(G) = r + 1. Without loss of generality, let e = v1w12.
We will show that pd(S(G(e; k))) = pd(G)−1 = r. Since m ≥ 2, there is a vertex having
r leaves, by Corollary 2.2, we have that pd(S(G(e; k)) ≥ r.

Let Π = {L1, L2, · · · , Lr} be a partition of V (S(G(e; k))) where L1 =
{v1, vm, w11, w21, · · · , wm1, x1}, L2 = {v2, w12, w13, w22, w32, · · · , wm2, x2, x3, · · · , xk},
Li = {vi, w1(i+1), w2i, · · · , wmi} for i ∈ [3, r − 1], and Lr = {vr, w2r, w3r, · · · , wmr}.
Let u, v be two distinct vertices of S(G(e; k)), we will show that r(u|Π′) 6= (v|Π′).

Let u and v be two non subdivision vertices. If u, v are backbone vertices, then
clearly r(u|Π) 6= r(v|Π) since u = v1 and v = vm are distinguished by Lr. Let u and
v be two leaves. If u = wtj and v = wsj , for some s, t ∈ [2,m] , then u and v are
distinguished by Lt. If u = w1j , then u and v are distinguished by Lr. Therefore, we
have r(u|Π) 6= r(v|Π). If u is a backbone vertex and v is a leaf, then r(u|Π) contains
at least two 1s and r(v|Π) contains at most one 1. Therefore r(u|Π) 6= r(v|Π).

Now, let u be a subdivision vertex and v be any other vertex. Since u and v are
distinguished by Lr, we have r(u|Π) 6= r(v|Π). This implies that pd(S(G(e; k))) = r =
pd(G)− 1.

Lemma 3.6. Let G ' C(m; r), r ≥ 3 and 2 ≤ m ≤ r. If e is a pendant edge of G,
then pd(S(G(e; k))) = pd(G) , for k ≥ 1.

Proof. By [5], we have that pd(G) = r with Π = {L1, L2, · · · , Lr} is a resolving partition

of G, where Li =
{
{vi, w1i, w2i, · · · , wmi} if 1 ≤ i ≤ m,
{w1i, w2i, · · · , wmi} if m + 1 ≤ i ≤ r.

Without loss of generality, let e = v1w12. Since there is a vertex having r leaves, by
Corollary 2.2, pd(S(G(e; k))) ≥ r.

Let Π′ = {L′
1, L

′
2, · · · , L′

r} be a partition of V (S(G(e; k))) where L′
i = Li, for i ∈ [1, r]

and i 6= 2, L′
2 = L2 ∪ {x1, x2, · · · , xk}. Let u, v be any two vertices of S(G(e; k)) in the

same partition class. We will show that r(u|Π) 6= r(v|Π).

If u, v are two non subdivision vertices, then r(u|Π′) 6= r(v|Π′) since r(u|Π) 6= r(v|Π).
If u is a subdivision vertex and v is any other vertex of S(G(e; k)) , then we have
r(u|Π′) 6= r(v|Π′), since u and v are distinguished by L′

1 or L′
3 . As a consequence,

pd(S(G(e; k))) ≤ r; and so pd(S(G(e; k))) = pd(G).

Lemma 3.7. Let G ' C(m; r), r ≥ 4 and 2 ≤ m ≤ r. If e is a backbone edge of G ,
then pd(S(G(e; k))) = pd(G) , for k ≥ 1.

Proof. From [5], we know that pd(G) = r with Π = {L1, L2, · · · , Lr} is a resolving

partition of G where Li =
{
{vi, w1i, w2i, · · · , wmi} if 1 ≤ i ≤ m,
{w1i, w2i, · · · , wmi} if m + 1 ≤ i ≤ r.
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Without loss of generality, let e = v1v2. Since vertex v1 have r leaves, by Corollary 2.2,
pd(S(G(e; k))) ≥ r.

Now, let Π′ = {L′
1, L

′
2, · · · , L′

r} be a partition of S(G(e; k)). If k = 1 , then define
L′

i = Li for all i 6= 3 and L′
3 = L3 ∪ {x1}. If k = 2 , then define L′

i = Li for all i 6= 3, 4
and L′

3 = L3 ∪ {x1}, L′
4 = L4 ∪ {x2}. If k ≥ 3 , then L′

i = Li for all i 6= 1, 2, 3 and
L′

1 = L1 ∪ {xk}, L′
2 = L2 ∪ {x1} and L′

3 = L3 ∪ {xi|2 ≤ i ≤ k − 1}.
For k = 1, 2, 3. Let u and v be two non subdivision vertices. Clearly that r(u|Π′) 6=

r(v|Π′) since r(u|Π) 6= r(v|Π). Let u be a subdivision vertex and v be any vertex
S(G(e; k)). Since r(u|Π′) contains exactly two 1s and r(v|Π′) contains r − 1 or at
most one 1, we have r(u|Π′) 6= r(v|Π′). This implies that Π′ is a resolving partition of
S(G(e; k)).

For k ≥ 4. Let u, v be two distinct subdivision vertices. Since u, v are distinguished
by L′

1 or L′
2, so we obtain r(u|Π′) 6= r(v|Π′). Now, let u be a subdivision vertex and v

be a non subdivision vertex. If u ∈ {x1, xk} , then r(u|Π′) contains exactly two 1s and
r(v|Π′) contains r − 1 or at most one 1s, so we obtain r(u|Π′) 6= r(v|Π′). If u = xi for
some i ∈ [2, k − 1] , then u and v are distinguished by L′

r so r(u|Π′) 6= r(v|Π′). If u, v
are non subdivision vertices, then r(u|Π′) 6= r(v|Π′) since r(u|Π) 6= r(v|Π). Therefore,
Π′ is a resolving partition of S(G(e; k)) and pd(S(G(e; k))) = pd(G) = r.

Theorem 3.8. Let G ' C(m; r), r ≥ 3, m ≥ 2 and e ∈ E(G). Then,

pd(S(G(e; k))) =


pd(G) + 1 if e is a backbone edge and

((r=3, m=3 and k ≥ 1) or (r=3,m=2 and k=4)),
pd(G)− 1 if e is a pendant edge and m=r+1,
pd(G) otherwise.

Proof. We consider the following two cases:
Case 1. e is a backbone edge of G.

For r = 3, m = 2. By Lemma 3.3, we have pd(S(G(e; k))) = pd(G) + 1 for k =
4 and pd(S(G(e; k))) = pd(G) for k 6= 4. For r = 3 and m = 3, by Lemma 3.4,
pd(S(G(e; k))) = pd(G) + 1 for k ≥ 1. For r ≥ 4, m ≤ r, by Lemma 3.7, we have
pd(S(G(e; k))) = pd(G) = r.

For r ≥ 3, m ≥ r+1. By [5], we have pd(G) = r+1, with Π = {L1, L2, · · · , Lr, Lr+1}
is a resolving partition of G where L1 = {w11, w21, · · · , wm1, v1, · · · , vm−1}, Lr+1 =
{vm} and Lj = {wij |2 ≤ i ≤ m} for 2 ≤ j ≤ r. We will show that pd(S(G(e; k))) ≥
r + 1. Let Π′ be a resolving partition of S(G(e; k)). For a contradiction, assume that
pd(S(G(e; k))) = r. Since each vi ∈ [1,m] has r leaves belonging to distinct classes of
Π′ and m ≥ r + 1, then there exist va and vb , a 6= b such that r(va|Π′) = r(vb|Π′), a
contradiction. Thus, pd(S(G(e; k))) ≥ r + 1.

Now, let Π′ = {L′
1, L

′
2, · · · , L′

r+1} be a partition of V (S(G(e; k))) where L′
i = Li for

all i ∈ [1, r + 1] and i 6= 1, L′
1 = L1 ∪ {xi|1 ≤ i ≤ k}. Let u, v be any two distinct

vertices in the same class of Π′. If u 6= vi and v 6= w(i+1)1 , i ∈ [1,m − 1] , then they
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are distinguished by L′
r+1. So, we have r(u|Π′) 6= r(v|Π′). If u = vi and v = w(i+1)1 ,

then they are distinguished by L′
2 so we have r(u|Π′) 6= r(v|Π′). This implies Π′ is a

resolving of S(G(e; k)). Thus, pd(S(G(e; k))) = r + 1 = pd(G).

Case 2. e is a pendant edge of G.

For r ≥ 3, m ≤ r. By Lemma 3.6, we have pd(S(G(e; k))) = pd(G) = r. For r ≥ 3,
m = r + 1. By Lemma 3.5, we have pd(S(G(e; k))) = r = pd(G)− 1.

For r ≥ 3 and m ≥ r + 2. By [5], we have pd(G) = r + 1
with Π = {L1, L2, · · · , Lr, Lr+1} is a resolving partition of G, where L1 =
{v1, v2, · · · , vm−1, w11, w21, · · · , wr1}, Li = {w1i, w2i, · · · , wmi} for 2 ≤ i ≤ r, and
Lr+1 = {vm}.

We will show that pd(S(G(e; k)) ≥ pd(G) = r + 1. Without loss of generality, let
e = v1w12. For a contradiction, assume that pd(S(G(e; k))) = r . Let Π′ be a resolving
partition of S(G(e; k)). Since each vi ∈ [2,m] has r leaves belonging to distinct classes
of Π′ and m ≥ r + 2, there are va and vb with a 6= b ∈ [2,m], so we have r(va|Π′) =
r(vb|Π′). Thus, pd(S(G(e; k))) ≥ r + 1.

Now, let Π′ = {L′
1, L

′
2, · · · , L′

r, Lr+1} be a partition of S(G(e; k)) where L′
i = Li,

for i 6= 2 and L′
2 = L2 ∪ {x1, x2, · · · , xk}. Let u and v be two distinct vertices of

S(G(e; k)) . If u 6= v1 and v 6= w(i+1)1, i ∈ [1,m − 1], then they are distinguished
by L′

r+1 . So, we have r(u|Π′) 6= r(v|Π′). If u = v1 and v = w(i+1)1, i ∈ [1,m − 1] ,
then they are distinguished by L′

2. This implies that pd(S(G(e; k))) ≤ r + 1. Therefore,
pd(S(G(e; k))) = pd(G) = r + 1.
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