AKCE
 INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS

AKCE Int. J. Graphs Comb., 10, No. 3 (2013), pp. 317-325
The Partition dimension for a subdivision of HOMOGENEOUS CATERPILLARS

Amrullah, Hilda Assiyatun, Edy Tri Baskoro,
Saladin Uttunggadewa and Rinovia Simanjuntak
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Science
Institut Teknologi Bandung (ITB)
Jalan Ganesa 10 Bandung 40132 Indonesia
e-mail: amrullah@students.itb.ac.id, \{hilda,ebaskoro,s_uttunggadewa,rino\} @math.itb.ac.id

The partition dimension for a subdivision of HOMOGENEOUS CATERPILLARS

Amrullah, Hilda Assiyatun, Edy Tri Baskoro, Saladin Uttunggadewa and Rinovia Simanjuntak
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Science
Institut Teknologi Bandung (ITB)
Jalan Ganesa 10 Bandung 40132 Indonesia
e-mail: amrullah@students.itb.ac.id, \{hilda,ebaskoro,s_uttunggadewa,rino\} @math.itb.ac.id

Abstract

The concept of graph partition dimension was introduced by Chartrand et al. (1998). Let $G=(V, E)$ be a connected graph. For every $v \in V(G)$ and $L \subseteq V(G)$, define the distance from v to L as $d(v, L)=\min \{d(v, w) \mid w \in L\}$. Let $\Pi=\left\{L_{1}, L_{2}, \cdots, L_{k}\right\}$ be a partition of $V(G)$. The representation of a vertex v with respect to Π is defined as $r(v \mid \Pi)=\left(d\left(v, L_{1}\right), d\left(v, L_{2}\right), \cdots, d\left(v, L_{k}\right)\right)$. The partition Π is called a resolving partition of G if all representations of the vertices are distinct. The partition dimension of a graph G can be defined as the cardinality of a minimum resolving partition Π of G.

Let $e \in V(G)$ and $k \geq 1$. The subdivision $S(G(e ; k))$ of a graph G on e is a graph obtained from graph G by replacing edge e with a path on $k+2$ vertices. In this paper, we determine the partition dimension of $S(G(e ; k))$ with $G \simeq C(m ; r)$ is a homogeneous caterpillar. We show that $p d(S(G(e ; k)))=p d(G)$ for almost all values of m, r and k.

Keywords: Caterpillar, subdivision, homogeneous, partition dimension, resolving partition.
2000 Mathematics Subject Classification: 05C12

1. Introduction

The concept of the metric dimension of a graph was introduced independently by Slater [9] and Harary and Melter [6]. Let $G=(V, E)$ be a connected graph. For $v, w \in V(G)$ and $A \subseteq V(G)$, the distance $d(v, w)$ from vertices v and w is the length of a shortest path from v to w. The distance $d(v, A)$ from vertex v to A is defined as $\min \{d(v, a) \mid a \in A\}$. The representation $r(v \mid A)$ of v with respect to A is the vector $\left(d\left(v, a_{1}\right), d\left(v, a_{2}\right), \cdots, d\left(v, a_{k}\right)\right)$ if $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$. The set A is called a resolving set of G if $r(v \mid A) \neq r(w \mid A)$ for all distinct $v, w \in V(G)$. The metric dimension $\beta(G)$ of G is the cardinality of a minimum resolving set. One of variants of this concept, namely partition dimension, was then introduced by Chartrand et al. [2]. Let $\Pi=\left\{L_{1}, L_{2}, \cdots, L_{k}\right\}$ be a k-partition of $V(G)$. The representation of a vertex v with respect to Π, denoted by $r(v \mid \Pi)$, is the vector $\left(d\left(v, L_{1}\right), d\left(v, L_{2}\right), \cdots, d\left(v, L_{k}\right)\right)$. The partition Π is called a resolving partition of G if $r(w \mid \Pi) \neq r(v \mid \Pi)$ for all distinct vertices in G. Two vertices
u, v in G are said to be distinguishable if there exists a partition class L such that $d(u, L) \neq d(v, L)$. In this case, vertices u and v are also called distinguished by L. A vertex $v \in G$ is called a dominant vertex if the distance from v to any other partition class induced by a resolving partition in G is 1 . The partition dimension $p d(G)$ of G is the smallest integer k such that G has a resolving k-partition. If two distinct vertex u and v are in the same partition class under Π, then we write $u \sim_{\Pi} v$, otherwise $u \propto_{\Pi} v$.

Finding the partition dimension of a general graph is a NP-complete problem. So, there is no efficient algorithm to determine the partition dimension of a general graph. Therefore, many researchers restrict their study in finding the partition dimension of graphs for certain classes.

Chartrand et al. [3] showed that path P_{n} with $n \geq 2$ is the only graph G with $p d(G)=2$. The complete graph K_{n} is the only graph G with $p d(G)=n$. Furthermore, they show that the graphs $K_{1, n-1}, K_{n}-e$ and $K_{1}+\left(K_{1} \cup K_{n-2}\right)$ are the only graphs G on n vertices with $\operatorname{pd}(G)=n-1$. Tomescu [7] showed that there are 23 graphs having $p d(G)=n-2$.

The partition dimension of a graph produced by a binary graph operation has been also considered. For instance, Baskoro and Darmaji [1] determined the partition dimension of the corona product of two graphs. For wheels, Tomescu et al. [8] gave the lower and upper bounds of the partition dimension of wheels W_{n}, namely $\left\lceil(2 n)^{1 / 3}\right\rceil \leq p d\left(W_{n}\right) \leq p+1$, with p be a smallest prime such that $p(p-1) \geq n$. For $3 \leq n \leq 20$, they gave the exact values of their partition dimensions.

There are many open problems in determining the partition dimension of graphs. One of them is finding this value for an arbitrary tree. Until now, there is no explicit formula known for the partition dimension of a general tree. However, for some particular classes of trees for instance paths [3], caterpillars [5], firecrackers and banana trees [4], their values are known. Chartrand et al. [2] showed that the partition dimension of double star $S_{m, n}$ depends on their maximum degree. Moreover, they also derived the lower and upper bounds of a caterpillar, namely a tree having the property that the removal of its leaves results a path. In this paper, we present the partition dimension of a subdivision of a homogeneous caterpillar. Note that the subdivision of a tree is also a tree.

2. Previous Lemmas

This lemma is very useful in determining our main results.
Lemma 2.1. [2] Let G be a connected with a resolving partition Π. If $d(u, w)=d(v, w)$ for all $w \in V(G)-\{u, v\}$, then vertices u, v must be in distinct partition classes of Π.

The following result is a direct consequence of Lemma 2.1
Corollary 2.2. [2] If connected graph G has a vertex having k leaves, then $p d(G) \geq k$.

For integers $m, n_{1}, n_{2}, \cdots, n_{m} \geq 2$, define a caterpillar $C\left(m ; n_{1}, n_{2}, \cdots, n_{m}\right)$ as a graph obtained by attaching n_{i} vertices to each vertex v_{i} of the path P_{m}, for $i \in[1, m]$. The path P_{m} in $C\left(m ; n_{1}, n_{2}, \cdots, n_{m}\right)$ is called the backbone of the caterpillar. All vertices of degree one are called leaves. All leaves attached to v_{i} are labeled by $w_{i 1}, w_{i 2}, \cdots, w_{i n_{i}}$. Edges $v_{i} w_{i j}$ and $v_{i} v_{i+1}$ are called pendant and backbone edges, respectively. If $n_{1}=n_{2}=$ $\cdots=n_{m}=r$, then the caterpillar is called a homogeneous caterpillar, and it is denoted by $C(m ; r)$. Darmaji et al. [5] gave the partition dimension of a homogeneous caterpillar in the following theorem.

Theorem 2.3. [5] Let $G \approx C(m, r)$ with $r \geq 3, m \geq 2$. Then,

$$
p d(G)= \begin{cases}r & \text { if } r \leq m, \\ r+1 & \text { otherwise }\end{cases}
$$

3. Main Results

In this section, we determine the partition dimension of a subdivision graph of a homogeneous caterpillar $C(m, r)$. Let $G=(V, E)$ be a connected graph and $e \in E(G)$. The subdivision of a graph G on the edge e, denoted by $S(G(e ; k)$), is a graph obtained from the graph G by replacing edge e with a path on $k+2$ vertices. The internal vertices of the path replacing edge e are called subdivision vertices in $S(G(e ; k))$. The subdivision vertices of $S(G(e ; k))$ are labelled by $x_{1}, x_{2}, \cdots, x_{k}$.

Lemma 3.1. Let $G \simeq C\left(m ; r_{1}, r_{2}, \cdots, r_{m}\right), r=\max \left\{r_{1}, r_{2}, \cdots, r_{m}\right\}$, and $r \leq m$. Let $e=v_{a} v_{b}$ be a backbone edge of G, for some $a, b \in[1, m]$. Let Π be a resolving r partition of $S(G(e ; k))$ with $k \geq 2$. Let $\left(v_{a}, x_{1}\right) \in E(S(G(e ; k))$.
(i) If vertex v_{a} has r leaves, then $x_{2} \propto_{\Pi} v_{a}$ and $x_{1} \propto_{\Pi} x_{2}$.
(ii) If vertex v_{b} has r leaves, then $x_{k-1} \nsim \Pi_{\Pi} v_{b}$ and $x_{k} \nsim \Pi_{\Pi} x_{k-1}$.

Proof. Let Π be a resolving r-partition of $S(G(e ; k))$. Since vertex v_{a} has r leaves $w_{a 1}, w_{a 2}, w_{a 3}, \cdots, w_{a r}$, then by Lemma 2.1, $w_{a 1}, w_{a 2}, w_{a 3}, \cdots, w_{a r}$ must be in distinct partition classes. Furthermore, there are (not necessarily distinct) integers $p, q \in[1, r]$ such that $v_{a} \sim_{\Pi} w_{a p}$ and $x_{1} \sim_{\Pi} w_{a q}$.
(i) To show the first case, assume that $x_{2} \sim_{\Pi} v_{a}$. But, this implies that $x_{1} \sim_{\Pi} w_{a i}$ for some $i \in[1, r]$ and $r\left(w_{a i} \mid \Pi\right)=r\left(x_{1} \mid \Pi\right)$, a contradiction. Therefore $x_{2} \varkappa_{\Pi} v_{a}$. But, this implies that $x_{1} \nsim \Pi_{\Pi} x_{2}$. Since otherwise, there exists $i \in[1, r]$ such that $r\left(w_{a i} \mid \Pi\right)=r\left(x_{1} \mid \Pi\right)$, a contradiction.
(ii) The second case can be proved similarly.

Lemma 3.2. Let $G \simeq C\left(m ; r_{1}, r_{2}, \cdots, r_{m}\right), r=\max \left\{r_{1}, r_{2}, \cdots, r_{m}\right\}$. Let v_{a} and v_{b} be two vertices adjacent to r leaves, respectively. Let Π be a resolving r-partition of $S(G(e, k))$ with e is a backbone edge incident to v_{a} and $\left(v_{a}, x_{1}\right) \in E(S(G(e ; k)), k \geq 2$. If $x_{2} \sim_{\Pi} v_{b}$ and $v_{a} \nsim \Pi_{\Pi} v_{b}$, then $v_{a} \nsim п ~_{\Pi} x_{1}$.

Proof. Let Π be a resolving r-partition of $S(G(e ; k))$. Since v_{b} has r leaves, there is a leaf $w_{b s}$ such that $x_{1} \sim_{\Pi} w_{b s}$ for some $s \in[1, r]$. Assume that $v_{a} \sim_{\Pi} x_{1}$. Since $x_{2} \sim_{\Pi} v_{b}$ and $v_{a} \nsim ~_{\Pi} v_{b}$, then we have $r\left(w_{a s} \mid \Pi\right)=r\left(x_{1} \mid \Pi\right)$, a contradiction. Thus, $v_{a} \nsim_{\Pi} x_{1}$.

Lemma 3.3. Let $G \simeq C(2,3)$. If e is a backbone edge of G and $k \geq 1$ then

$$
p d(S(G(e ; k)))= \begin{cases}p d(G)+1 & \text { if } k=4, \\ p d(G) & \text { otherwise } .\end{cases}
$$

Proof. From [5], we know that $p d(G)=3$ with $\Pi=\left\{L_{1}, L_{2}, L_{3}\right\}$ is a resolving partition of G where $L_{1}=\left\{v_{1}, w_{11}, w_{21}\right\}, L_{2}=\left\{v_{2}, w_{12}, w_{22}\right\}$, and $L_{1}=\left\{w_{13}, w_{23}\right\}$. Now, consider the following two cases:

Case 1. $k=4$.
We will show that $p d(S(G(e ; 4))) \geq p d(G)+1=4$. For a contradiction, let $\operatorname{pd}(S(G(e ; 4)))=3$ and $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}\right\}$ be a resolving partition of $S(G(e ; 4))$. Without loss of generality, let vertices $v_{1} \in L_{1}^{\prime}$ and $v_{2} \in L_{2}^{\prime}$. By Lemma 3.1, $x_{2} \in L_{2}^{\prime}$ or $x_{2} \in L_{3}^{\prime}$. Now, we consider the following two subcases.
Subcase 1.1: $x_{2} \in L_{2}^{\prime}$.
By Lemmas 3.1 and 3.2, we have $x_{1} \in L_{3}^{\prime}$. Since $v_{2} \in L_{2}^{\prime}$, by Lemma 3.1, we obtain $x_{3} \in L_{1}^{\prime}$ or $x_{3} \in L_{3}^{\prime}$. Clearly that $x_{3} \notin L_{1}^{\prime}$ otherwise $r\left(v_{2} \mid \Pi^{\prime}\right)=r\left(x_{2} \mid \Pi^{\prime}\right)$, so $x_{3} \in L_{3}^{\prime}$. By Lemma 3.1, x_{4} must be in L_{1}^{\prime} or L_{2}^{\prime}. If $x_{4} \in L_{1}^{\prime}$, then we have $r\left(x_{4} \mid \Pi^{\prime}\right)=r\left(v_{1} \mid \Pi^{\prime}\right)$. If $x_{4} \in L_{2}^{\prime}$, then we have $r\left(x_{4} \mid \Pi^{\prime}\right)=r\left(x_{2} \mid \Pi^{\prime}\right)$. This implies that $x_{2} \notin L_{2}^{\prime}$.
Subcase 1.2: $x_{2} \in L_{3}^{\prime}$.
By Lemma 3.1, we have $x_{1} \in L_{2}^{\prime}$ or $x_{1} \in L_{1}^{\prime}$. If $x_{1} \in L_{2}^{\prime}$, then $r\left(x_{1} \mid \Pi^{\prime}\right)=r\left(v_{2} \mid \Pi^{\prime}\right)$. If $x_{1} \in L_{1}^{\prime}$, then we consider vertices x_{3} and x_{4} in partition class of Π^{\prime}. Since $v_{2} \in L_{2}^{\prime}$, by Lemma 3.1, $x_{3} \notin L_{2}^{\prime}$ and $x_{3} \nsim_{\Pi} x_{4}$, so we have four subcases for x_{3} and x_{4} namely a) $x_{3} \in L_{1}^{\prime}$ and $x_{4} \in L_{2}^{\prime}$, and so $r\left(x_{3} \mid \Pi^{\prime}\right)=r\left(v_{1} \mid \Pi^{\prime}\right)$. b) $x_{3} \in L_{1}^{\prime}$ and $x_{4} \in L_{3}^{\prime}$, and so $r\left(x_{1} \mid \Pi^{\prime}\right)=r\left(x_{3} \mid \Pi^{\prime}\right)$. c) $x_{3} \in L_{3}^{\prime}$ and $x_{4} \in L_{1}^{\prime}$, and so $r\left(x_{3} \mid \Pi^{\prime}\right)=r\left(v_{13} \mid \Pi^{\prime}\right)$. d) $x_{3} \in L_{3}^{\prime}$ and $x_{4} \in L_{2}^{\prime}$, and so $r\left(x_{3} \mid \Pi^{\prime}\right)=r\left(v_{23} \mid \Pi^{\prime}\right)$. These imply that $x_{2} \notin L_{3}^{\prime}$. By Subcases 1.1 and 1.2 , we conclude that $p d(S(G(e ; k)) \geq 4$.

Furthermore, let $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right\}$ be a partition of $S(G(e ; k))$ where $L_{i}^{\prime}=L_{i}$ for $i \in\{1,2,3\}$, and $L_{4}^{\prime}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. If u, v are non subdivision vertices of $S(G(e ; k))$, then clearly $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$ since $r(u \mid \Pi) \neq r(v \mid \Pi)$.

If u, v are subdivision vertices of $S(G(e ; k))$, then u and v are distinguished by L_{1}^{\prime} or L_{2}^{\prime}, so $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. This implies that Π^{\prime} is a resolving partition of $S(G(e ; k))$.

So, $p d(S(G(e ; k))) \leq p d(G)+1=4$. As a consequence, we have $p d(S(G(e ; k)))=p d(G)+$ $1=4$.

Case 2. $k \neq 4$.
We will show that $p d(S(G(e ; k)))=p d(G)=3$. Let $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}\right\}$ be a partition of $V(S(G(e ; k)))$.

For $k=1$, define $L_{1}^{\prime}=L_{1}, L_{2}^{\prime}=L_{2}$ and $L_{3}^{\prime}=L_{3} \cup\left\{x_{1}\right\}$. For $k=2$, define $L_{1}^{\prime}=$ $L_{1} \cup\left\{x_{1}\right\}, L_{2}^{\prime}=L_{2}$ and $L_{3}^{\prime}=L_{3} \cup\left\{x_{2}\right\}$. For $k \geq 3$ and $k \neq 4$, define $L_{1}^{\prime}=L_{1} \cup\left\{x_{1}\right\}$, $L_{2}^{\prime}=L_{2} \cup\left\{x_{k}\right\}$ and $L_{3}^{\prime}=L_{3} \cup\left\{x_{2}, x_{3}, \cdots, x_{k-1}\right\}$.

For $k=1,2,3$, it is clear that $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$ for any distinct vertices u and v. Now consider $k \geq 5$. If u, v are any two subdivision vertices, then $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$ because u, v are distinguished by either L_{1}^{\prime} or L_{2}^{\prime}. Now, let u be a subdivision vertex and v be a non subdivision vertex. If $u=x_{1}$ or $u=x_{k}$, then u, v are distinguished by either L_{3}^{\prime} or L_{2}^{\prime}. If $u=x_{i}$ for some $i \in[2, k-1]$, then u, v are distinguished by either L_{1}^{\prime} or L_{2}^{\prime}. This implies that $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. Therefore, $\operatorname{pd}(S(G(A ; k)))=p d(G)=3$ for $k \in[1,3]$ or $k \geq 5$.

Lemma 3.4. Let $G \simeq C(3 ; 3)$. If e is a backbone edge of G, then $\operatorname{pd}(S(G(e ; k)))=$ $p d(G)+1$, for $k \geq 1$.

Proof. From [5], we know that $p d(G)=3$. Let $\Pi=\left\{L_{1}, L_{2}, L_{3}\right\}$ be a resolving partition of G, where $L_{1}=\left\{v_{1}, w_{11}, w_{21}, w_{31}\right\}, L_{2}=\left\{v_{2}, w_{12}, w_{22}, w_{32}\right\}$ and $L_{3}=\left\{v_{3}, w_{13}, w_{23}, w_{33}\right\}$. We will show that $p d(S(G(e ; k)) \geq p d(G)+1=4$.
For a contradiction, assume that $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}\right\}$ is a resolving partition of $S(G(e ; k))$. Let $e=v_{1} v_{2}$ and without loss of generality assume $v_{1} \in L_{1}^{\prime}, v_{2} \in L_{2}^{\prime}$, and $v_{3} \in L_{3}^{\prime}$ (since they are dominant vertices and must be in different partition classes).

For $k=1$. If $x_{1} \in L_{1}^{\prime}$, then $r\left(x_{1} \mid \Pi^{\prime}\right)=r\left(v_{2 i} \mid \Pi^{\prime}\right)$ for some i. If $x_{1} \in L_{2}^{\prime}$, then $r\left(x_{1} \mid \Pi^{\prime}\right)=r\left(v_{1 i} \mid \Pi^{\prime}\right)$ for some i. If $x_{1} \in L_{3}^{\prime}$, then $r\left(x_{1} \mid \Pi^{\prime}\right)=r\left(v_{3} \mid \Pi^{\prime}\right)$, a contradiction. Therefore, $p d(S(G(e ; k))) \geq 4$ for $k=1$.

For $k \geq 2$. By Lemma 3.1, x_{2} must be in either L_{2}^{\prime} or L_{3}^{\prime}. If vertex $x_{2} \in L_{2}^{\prime}$, then by Lemmas 3.1 and 3.2, we must have $x_{1} \in L_{3}^{\prime}$; so $r\left(x_{1} \mid \Pi^{\prime}\right)=r\left(v_{3} \mid \Pi^{\prime}\right)$. This implies that $x_{2} \in L_{3}^{\prime}$. However, by Lemmas 3.1 and 3.2 , we must have $x_{1} \in L_{2}^{\prime}$, so $r\left(x_{1} \mid \Pi^{\prime}\right)=r\left(v_{2} \mid \Pi^{\prime}\right)$, a contradiction. Therefore, $p d(S(G(e ; k))) \geq 4$ for $k \geq 2$.

Now, we will show $p d(S(G(e ; k))) \leq p d(G)+1$. To show this, consider the partition $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right\}$ of $S(G(e ; k))$ where $L_{i}^{\prime}=L_{i}$ for $i \in\{1,2,3\}$, and $L_{4}^{\prime}=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$. If u, v are two non subdivision vertices of $S(G(e ; k))$, then clearly $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$ since $r(u \mid \Pi) \neq r(v \mid \Pi)$. If u, v are two subdivision vertices of $S(G(e ; k))$, then u and v are distinguished by L_{1}^{\prime} or L_{2}^{\prime}, so $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. This implies that Π^{\prime} is a resolving partition of $S(G(e ; k))$. Thus $p d(S(G(e ; k))) \leq p d(G)+1=4$. As a consequence, $p d(S(G(e ; k)))=p d(G)+1$.

Lemma 3.5. Let $G \simeq C(m ; r), \quad r \geq 3$ and $m=r+1$. If e is a pendant edge of G, then $\operatorname{pd}(S(G(e ; k)))=p d(G)-1$.

Proof. From [5], we know that $p d(G)=r+1$. Without loss of generality, let $e=v_{1} w_{12}$. We will show that $p d(S(G(e ; k)))=p d(G)-1=r$. Since $m \geq 2$, there is a vertex having r leaves, by Corollary 2.2 , we have that $p d(S(G(e ; k)) \geq r$.

Let $\Pi=\left\{L_{1}, L_{2}, \cdots, L_{r}\right\}$ be a partition of $V(S(G(e ; k)))$ where $L_{1}=$ $\left\{v_{1}, v_{m}, w_{11}, w_{21}, \cdots, w_{m 1}, x_{1}\right\}, \quad L_{2}=\left\{v_{2}, w_{12}, w_{13}, w_{22}, w_{32}, \cdots, w_{m 2}, x_{2}, x_{3}, \cdots, x_{k}\right\}$, $L_{i}=\left\{v_{i}, w_{1(i+1)}, w_{2 i}, \cdots, w_{m i}\right\}$ for $i \in[3, r-1]$, and $L_{r}=\left\{v_{r}, w_{2 r}, w_{3 r}, \cdots, w_{m r}\right\}$. Let u, v be two distinct vertices of $S(G(e ; k))$, we will show that $r\left(u \mid \Pi^{\prime}\right) \neq\left(v \mid \Pi^{\prime}\right)$.

Let u and v be two non subdivision vertices. If u, v are backbone vertices, then clearly $r(u \mid \Pi) \neq r(v \mid \Pi)$ since $u=v_{1}$ and $v=v_{m}$ are distinguished by L_{r}. Let u and v be two leaves. If $u=w_{t j}$ and $v=w_{s j}$, for some $s, t \in[2, m]$, then u and v are distinguished by L_{t}. If $u=w_{1 j}$, then u and v are distinguished by L_{r}. Therefore, we have $r(u \mid \Pi) \neq r(v \mid \Pi)$. If u is a backbone vertex and v is a leaf, then $r(u \mid \Pi)$ contains at least two 1 s and $r(v \mid \Pi)$ contains at most one 1 . Therefore $r(u \mid \Pi) \neq r(v \mid \Pi)$.

Now, let u be a subdivision vertex and v be any other vertex. Since u and v are distinguished by L_{r}, we have $r(u \mid \Pi) \neq r(v \mid \Pi)$. This implies that $p d(S(G(e ; k)))=r=$ $p d(G)-1$.

Lemma 3.6. Let $G \simeq C(m ; r), r \geq 3$ and $2 \leq m \leq r$. If e is a pendant edge of G, then $\operatorname{pd}(S(G(e ; k)))=p d(G)$, for $k \geq 1$.

Proof. By [5], we have that $p d(G)=r$ with $\Pi=\left\{L_{1}, L_{2}, \cdots, L_{r}\right\}$ is a resolving partition of G, where $L_{i}= \begin{cases}\left\{v_{i}, w_{1 i}, w_{2 i}, \cdots, w_{m i}\right\} & \text { if } 1 \leq i \leq m, \\ \left\{w_{1 i}, w_{2 i}, \cdots, w_{m i}\right\} & \text { if } m+1 \leq i \leq r .\end{cases}$
Without loss of generality, let $e=v_{1} w_{12}$. Since there is a vertex having r leaves, by Corollary 2.2, $\operatorname{pd}(S(G(e ; k))) \geq r$.

Let $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{r}^{\prime}\right\}$ be a partition of $V(S(G(e ; k)))$ where $L_{i}^{\prime}=L_{i}$, for $i \in[1, r]$ and $i \neq 2, L_{2}^{\prime}=L_{2} \cup\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$. Let u, v be any two vertices of $S(G(e ; k))$ in the same partition class. We will show that $r(u \mid \Pi) \neq r(v \mid \Pi)$.

If u, v are two non subdivision vertices, then $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$ since $r(u \mid \Pi) \neq r(v \mid \Pi)$. If u is a subdivision vertex and v is any other vertex of $S(G(e ; k))$, then we have $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$, since u and v are distinguished by L_{1}^{\prime} or L_{3}^{\prime}. As a consequence, $p d(S(G(e ; k))) \leq r ;$ and so $p d(S(G(e ; k)))=p d(G)$.

Lemma 3.7. Let $G \simeq C(m ; r), r \geq 4$ and $2 \leq m \leq r$. If e is a backbone edge of G, then $p d(S(G(e ; k)))=p d(G)$, for $k \geq 1$.

Proof. From [5], we know that $p d(G)=r$ with $\Pi=\left\{L_{1}, L_{2}, \cdots, L_{r}\right\}$ is a resolving partition of G where $L_{i}= \begin{cases}\left\{v_{i}, w_{1 i}, w_{2 i}, \cdots, w_{m i}\right\} & \text { if } 1 \leq i \leq m, \\ \left\{w_{1 i}, w_{2 i}, \cdots, w_{m i}\right\} & \text { if } m+1 \leq i \leq r .\end{cases}$

Without loss of generality, let $e=v_{1} v_{2}$. Since vertex v_{1} have r leaves, by Corollary 2.2, $p d(S(G(e ; k))) \geq r$.

Now, let $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{r}^{\prime}\right\}$ be a partition of $S(G(e ; k))$. If $k=1$, then define $L_{i}^{\prime}=L_{i}$ for all $i \neq 3$ and $L_{3}^{\prime}=L_{3} \cup\left\{x_{1}\right\}$. If $k=2$, then define $L_{i}^{\prime}=L_{i}$ for all $i \neq 3,4$ and $L_{3}^{\prime}=L_{3} \cup\left\{x_{1}\right\}, \quad L_{4}^{\prime}=L_{4} \cup\left\{x_{2}\right\}$. If $k \geq 3$, then $L_{i}^{\prime}=L_{i}$ for all $i \neq 1,2,3$ and $L_{1}^{\prime}=L_{1} \cup\left\{x_{k}\right\}, L_{2}^{\prime}=L_{2} \cup\left\{x_{1}\right\}$ and $L_{3}^{\prime}=L_{3} \cup\left\{x_{i} \mid 2 \leq i \leq k-1\right\}$.

For $k=1,2,3$. Let u and v be two non subdivision vertices. Clearly that $r\left(u \mid \Pi^{\prime}\right) \neq$ $r\left(v \mid \Pi^{\prime}\right)$ since $r(u \mid \Pi) \neq r(v \mid \Pi)$. Let u be a subdivision vertex and v be any vertex $S(G(e ; k))$. Since $r\left(u \mid \Pi^{\prime}\right)$ contains exactly two 1 s and $r\left(v \mid \Pi^{\prime}\right)$ contains $r-1$ or at most one 1, we have $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. This implies that Π^{\prime} is a resolving partition of $S(G(e ; k))$.

For $k \geq 4$. Let u, v be two distinct subdivision vertices. Since u, v are distinguished by L_{1}^{\prime} or L_{2}^{\prime}, so we obtain $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. Now, let u be a subdivision vertex and v be a non subdivision vertex. If $u \in\left\{x_{1}, x_{k}\right\}$, then $r\left(u \mid \Pi^{\prime}\right)$ contains exactly two 1 s and $r\left(v \mid \Pi^{\prime}\right)$ contains $r-1$ or at most one 1 s , so we obtain $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. If $u=x_{i}$ for some $i \in[2, k-1]$, then u and v are distinguished by L_{r}^{\prime} so $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. If u, v are non subdivision vertices, then $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$ since $r(u \mid \Pi) \neq r(v \mid \Pi)$. Therefore, Π^{\prime} is a resolving partition of $S(G(e ; k))$ and $p d(S(G(e ; k)))=p d(G)=r$.

Theorem 3.8. Let $G \simeq C(m ; r), r \geq 3, m \geq 2$ and $e \in E(G)$. Then, $\operatorname{pd}(S(G(e ; k)))= \begin{cases}p d(G)+1 & \text { if } e \text { is a backbone edge and } \\ p d(G)-1 & ((r=3, m=3 \text { and } k \geq 1) \text { or }(r=3, m=\mathcal{2} \text { and } k=4)), \\ p d(G) & \text { otherwise. }\end{cases}$

Proof. We consider the following two cases:
Case 1. e is a backbone edge of G.
For $r=3, m=2$. By Lemma 3.3, we have $p d(S(G(e ; k)))=p d(G)+1$ for $k=$ 4 and $p d(S(G(e ; k)))=p d(G)$ for $k \neq 4$. For $r=3$ and $m=3$, by Lemma 3.4, $p d(S(G(e ; k)))=p d(G)+1$ for $k \geq 1$. For $r \geq 4, m \leq r$, by Lemma 3.7, we have $p d(S(G(e ; k)))=p d(G)=r$.

For $r \geq 3, m \geq r+1$. By [5], we have $p d(G)=r+1$, with $\Pi=\left\{L_{1}, L_{2}, \cdots, L_{r}, L_{r+1}\right\}$ is a resolving partition of G where $L_{1}=\left\{w_{11}, w_{21}, \cdots, w_{m 1}, v_{1}, \cdots, v_{m-1}\right\}, L_{r+1}=$ $\left\{v_{m}\right\}$ and $L_{j}=\left\{w_{i j} \mid 2 \leq i \leq m\right\}$ for $2 \leq j \leq r$. We will show that $p d(S(G(e ; k))) \geq$ $r+1$. Let Π^{\prime} be a resolving partition of $S(G(e ; k))$. For a contradiction, assume that $p d(S(G(e ; k)))=r$. Since each $v_{i} \in[1, m]$ has r leaves belonging to distinct classes of Π^{\prime} and $m \geq r+1$, then there exist v_{a} and $v_{b}, a \neq b$ such that $r\left(v_{a} \mid \Pi^{\prime}\right)=r\left(v_{b} \mid \Pi^{\prime}\right)$, a contradiction. Thus, $p d(S(G(e ; k))) \geq r+1$.

Now, let $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{r+1}^{\prime}\right\}$ be a partition of $V(S(G(e ; k)))$ where $L_{i}^{\prime}=L_{i}$ for all $i \in[1, r+1]$ and $i \neq 1, L_{1}^{\prime}=L_{1} \cup\left\{x_{i} \mid 1 \leq i \leq k\right\}$. Let u, v be any two distinct vertices in the same class of Π^{\prime}. If $u \neq v_{i}$ and $v \neq w_{(i+1) 1}, i \in[1, m-1]$, then they
are distinguished by L_{r+1}^{\prime}. So, we have $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. If $u=v_{i}$ and $v=w_{(i+1) 1}$, then they are distinguished by L_{2}^{\prime} so we have $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. This implies Π^{\prime} is a resolving of $S(G(e ; k))$. Thus, $p d(S(G(e ; k)))=r+1=p d(G)$.
Case 2. e is a pendant edge of G.
For $r \geq 3, m \leq r$. By Lemma 3.6, we have $p d(S(G(e ; k)))=p d(G)=r$. For $r \geq 3$, $m=r+1$. By Lemma 3.5, we have $p d(S(G(e ; k)))=r=p d(G)-1$.

For $r \geq 3$ and $m \geq r+2$. By [5], we have $p d(G)=r+1$ with $\Pi=\left\{L_{1}, L_{2}, \cdots, L_{r}, L_{r+1}\right\}$ is a resolving partition of G, where $L_{1}=$ $\left\{v_{1}, v_{2}, \cdots, v_{m-1}, w_{11}, w_{21}, \cdots, w_{r 1}\right\}, \quad L_{i}=\left\{w_{1 i}, w_{2 i}, \cdots, w_{m i}\right\}$ for $2 \leq i \leq r$, and $L_{r+1}=\left\{v_{m}\right\}$.

We will show that $p d(S(G(e ; k)) \geq p d(G)=r+1$. Without loss of generality, let $e=v_{1} w_{12}$. For a contradiction, assume that $p d(S(G(e ; k)))=r$. Let Π^{\prime} be a resolving partition of $S(G(e ; k))$. Since each $v_{i} \in[2, m]$ has r leaves belonging to distinct classes of Π^{\prime} and $m \geq r+2$, there are v_{a} and v_{b} with $a \neq b \in[2, m]$, so we have $r\left(v_{a} \mid \Pi^{\prime}\right)=$ $r\left(v_{b} \mid \Pi^{\prime}\right)$. Thus, $p d(S(G(e ; k))) \geq r+1$.

Now, let $\Pi^{\prime}=\left\{L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{r}^{\prime}, L_{r+1}\right\}$ be a partition of $S(G(e ; k))$ where $L_{i}^{\prime}=L_{i}$, for $i \neq 2$ and $L_{2}^{\prime}=L_{2} \cup\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$. Let u and v be two distinct vertices of $S(G(e ; k))$. If $u \neq v_{1}$ and $v \neq w_{(i+1) 1}, \quad i \in[1, m-1]$, then they are distinguished by L_{r+1}^{\prime}. So, we have $r\left(u \mid \Pi^{\prime}\right) \neq r\left(v \mid \Pi^{\prime}\right)$. If $u=v_{1}$ and $v=w_{(i+1) 1}, i \in[1, m-1]$, then they are distinguished by L_{2}^{\prime}. This implies that $p d(S(G(e ; k))) \leq r+1$. Therefore, $p d(S(G(e ; k)))=p d(G)=r+1$.

Acknowledgement

This research was supported by Institut Teknologi Bandung, Ministry of Education and Culture Indonesia through the Research Grant "Riset dan Inovasi KK 2013".

References

[1] E. T. Baskoro and Darmaji, The partition dimension of the corona product of two graphs, Far East J. Math. Sci. (FJMS) 66 (2012), 181-196.
[2] G. Chartrand, E. Salehi and P. Zhang, On the partition dimension of graph, Congr. Numer., 130 (1998), 157-168.
[3] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of graph, Aequationes Math., 59 (2000), 45-54.
[4] Darmaji, The partition dimension of multipartite graphs and corona product of two connected graphs (In Indonesia), Dissertation, Institut Teknologi Bandung, Indonesia, 2011.
[5] Darmaji, S. Uttunggadewa, R. Simanjuntak and E. T. Baskoro, The partition dimension of a complete multipartite graph, a special caterpillar and a windmill, J. Combin. Math. Combin. Comput., 71 (2009), 209-215.
[6] F. Harary and R. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195.
[7] I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Discrete Math., 308 (2008), 5026-5031.
[8] I. Tomescu, I. Javaid and Slamin, On the partition dimension and connected partition dimension of wheels, Ars Combin., 84 (2007), 311-317.
[9] P. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549-559.

