On the Metric Dimension of Corona Product of Graphs

H. sswadi 1, E.T Baskoro ${ }^{2}$, R. Simanjuntak ${ }^{2}$
${ }^{1}$ Department of MIPA, Gedung TG lantai 6, Universitas Surabaya, Jalan Raya Kalirungkut Surabaya 60292, Indonesia. hazrul_iswadi@yahoo.com
${ }^{2}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 40132, Indonesia.

Abstract

For an ordered set $W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the ordered k-tuple $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$ where $d(x, y)$ represents the distance between the vertices x and y. The set W is called a resolving set for G if every vertex of G has a distinct representation. A resolving set containing a minimum number of vertices is called a basis for G. The metric dimension of G, denoted by $\operatorname{dim}(G)$, is the number of vertices in a basis of G. A graph G corona $H, G \odot H$, is defined as a graph which formed by taking n copies of graphs H_{1}, H_{2}, \cdots, H_{n} of H and connecting i-th vertex of G to the vertices of H_{i}. In this paper, we determine the metric dimension of corona product graphs $G \odot H$, the lower bound of the metric dimension of $K_{1}+H$ and determine some exact values of the metric dimension of $G \odot H$ for some particular graphs H.

Keywords and phrases: Resolving set, metric dimension, basis, corona product graph.

2000 Mathematics Subject Classifications: 05C12

1 Introduction

In this paper we consider finite and simple graphs. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$, respectively. For a further reference
please see Chartrand and Lesniak [4].
The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. The distance is only denoted by $d(x, y)$ if we know the context of the graph G. For an ordered set $W=$ $\left\{w_{1}, w_{2}, \cdots, w_{k}\right\} \subseteq V(G)$ of vertices, we refer to the ordered k-tuple $r(v \mid W)$ $=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$ as the (metric) representation of v with respect to W. The set W is called a resolving set for G if $r(u \mid W)=r(v \mid W)$ implies $u=v$ for all $u, v \in G$. A resolving set with minimum cardinality is called a minimum resolving set or a basis. The metric dimension of a graph $G, \operatorname{dim}(G)$, is the number of vertices in a basis for G. To determine whether W is a resolving set for G, we only need to investigate the representations of the vertices in $V(G) \backslash W$, since the representation of each $w_{i} \in W$ has ' 0 ' in the i th-ordinate; and so it is always unique. If $d(u, x) \neq d(v, x)$, we shall say that vertex x distinguishes the vertices u and v and the vertices u and v are distinguished by x Likewise, if $r(u \mid S) \neq r(v \mid S)$, we shall say that the set S distinguishes vertices u and v.

The first papers discussing the notion of a (minimum) resolving set were written by Slater [19] and Harary and Melter [8]. Garey and Johnson [7] have proved that the problem of computing the metric dimension for general graphs is $N P$-complete. The metric dimension of amalgamation of cycle and complete graphs are widely investigated in [11, 12]. Manuel et al. [16, 15] determined the metric dimension of graphs which are designed for multiprocessor interconnection networks. Some researchers defined and investigated the family of graphs related to their metric dimension. Hernando et al. [9] investigated the extremal problem of the family of connected graphs with metric dimension β and diameter, and Javaid et al. [13] for the family of regular graphs with constant metric dimension.

Chartrand et al. [5] has characterized all graphs having metric dimensions $1, n-1$, or $n-2$. They also determined the metric dimensions of some wellknown families of graphs such as paths, cycles, complete graphs, and trees. Their results can be summarized as follows

Theorem A [5] Let G be a connected graph of order $n \geq 2$.
(i) $\operatorname{dim}(G)=1$ if and only if $G=P_{n}$.
(ii) $\operatorname{dim}(G)=n-1$ if and only if $G=K_{n}$.
(iii) For $n \geq 4$, $\operatorname{dim}(G)=n-2$ if and only if $G=K_{r, s},(r, s \geq 1), G=$ $K_{r}+\overline{K_{s}},(r \geq 1, s \geq 2)$, or $G=K_{r}+\left(K_{1} \cup K_{s}\right),(r, s \geq 1)$.
(iv) For $n \geq 3, \operatorname{dim}\left(C_{n}\right)=2$.
(\boldsymbol{v}) If T is a tree other than a path, then $\operatorname{dim}(T)=\sigma(T)-\operatorname{ex}(T)$, where $\sigma(T)$ denotes the sum of the terminal degrees of the major vertices of T, and $e x(T)$ denotes the number of the exterior major vertices of T.

Saenpholphat and Zhang in [17] have discussed the notion of distance similar in a graph. The neighbourhood $N(v)$ of a vertex v in a graph G is all of vertices in a graph G which adjacent to v. The closed neighbourhood $N[v]$ of a vertex v in a graph G is $N(v) \cup v$. Two vertices u and v of a connected graph G are said to be distance similar if $d(u, x)=d(v, x)$ for all $x \in V(G)-\{u, v\}$. They observed the following properties.

Proposition B Two vertices u and v of a connected graph G are distance similar if and only if (1) $u v \notin E(G)$ and $N(u)=N(v)$ or (2) $u v \in E(G)$ and $N[u]=N[v]$.

Proposition C Distance similarity in a connected graph G is an equivalence relation on $V(G)$.

Proposition D If U is a distance similar equivalence class of a connected graph G, then U is either independent in G or in \bar{G}.

Proposition E If U is a distance similar equivalence class in a connected graph G with $|U|=p \geq 2$, then every resolving set of G contains at least $p-1$ vertices from U.

Other researchers also considered the metric dimension of the graphs formed by operations of graph such as joint, Cartesian, and composition product of graphs. Caceres et al. in [2] stated the results of metric dimension of joint graphs. Caceres et al. in [3] investigated the characteristics of Cartesian product of graphs. Saputro et al. in [18] determined the metric dimension of Composition product of graphs. Iswadi et al. in [10] investigated the metric dimension of corona product $G \odot K_{1}$ for some particular graph G. In this paper, we continue and determine a general result of the metric dimension of corona product of graphs for any graph G and H. Furthermore, we determine the exact value of the metric dimension of corona product of the graph G with n-ary tree T.

2 Corona Product of Graphs

Let G be a connected graph of order n and H (not necessarily connected) be a graph with $|H| \geq 2$. A graph G corona $H, G \odot H$, is defined as a graph which formed by taking n copies of graphs $H_{1}, H_{2}, \cdots, H_{n}$ of H and connecting i-th vertex of G to the vertices of H_{i}. Throughout this section, we refer to H_{i} as a i-th copy of H connected to i-th vertex of G in $G \odot H$ for every $i \in\{1,2, \cdots, n\}$.

We extend the idea of distance similar. Let G be a connected graph. Two vertices u and v in a subgraph H of G are said to be distance similar with respect to H if $d(u, x)=d(v, x)$ for all $x \in V(G)-V(H)$. We observed this following fact for the graph of $G \odot H$.

Observation 1. Let G be a connected graph and H be a graph with order at least 2. Two vertices u, v in H_{i} is distance similar with respect to H_{i}.

We also have a distance property of two vertices x and y in H or in H_{i} subgraph $G \odot H$. A vertex $u \in G$ is called a dominant vertex if $d(u, v)=1$ for other vertices $v \in G$.

Lemma 1. Let G be a connected graph and H be a graph with order at least 2. If H contains a dominant vertex v then $d_{H}(x, y)=d_{G \odot H}(x, y)$, for every x, y in H or in a subgraph H_{i} of $G \odot H$.

Proof. Let v be a dominant vertex of H and x, y be in H. If $x y \in E(H)$ then $d_{H}(x, y)=1=d_{G \odot H}(x, y)$. If $x y \notin E(H)$ then $d_{H}(x, y)=d_{H}(x, v)+d_{H}(v, y)=$ $2=d_{G \odot H}(x, v)+d_{G \odot H}(v, y)=d_{G \odot H}(x, y)$. Then, $d_{H}(x, y)=d_{G \odot H}(x, y)$, for every x, y in H. By using similar reason with two previous sentences, we also have a conclusion $d_{G \odot H}(x, y)=d_{H}(x, y)$, for every x, y in H_{i}.

By using the similar reason with the proof of Lemma 1, we can prove this following lemma.

Lemma 2. Let G be a connected graph and H be a graph with order at least 2. Then $d_{K_{1}+H}(x, y)=d_{G \odot H}(x, y)$, for every x, y in a subgraph H of $K_{1}+H$ or in a subgraph H_{i} of $G \odot H$.

By using Observation 1, we have the following lemma.
Lemma 3. Let G be a connected graph of order n and H be a graph with order at least 2.
(i) If S is a resolving set of $G \odot H$ then $V\left(H_{i}\right) \cap S \neq \emptyset$ for every $i \in$ $\{1, \ldots, n\}$.
(ii) If B is a basis of $G \odot H$ then $V(G) \cap B=\emptyset$.

Proof. (i) Suppose there exists $i \in\{1, \ldots, n\}$ such that $V\left(H_{i}\right) \cap S=\emptyset$. Let $x, y \in V\left(H_{i}\right)$. By using Observation 1, $d_{G \odot H}(x, u)=d_{G \odot H}(y, u)$ for every $u \in S$, a contradiction.
(ii) Suppose that $V(G) \cap B \neq \emptyset$. We will show that $S^{\prime}=B-V(G)$ is a resolving set for $G \odot H$. From (i), it is clear that $S^{\prime} \neq \emptyset$. Let x, y two different vertices in $G \odot H$. We have four cases:
Case 1: $x, y \in V\left(H_{i}\right)$ for every $i \in\{1, \ldots, n\}$. By using (i), there are some $v \in V\left(H_{i}\right) \cap S^{\prime}$ such that $d(x, v) \neq d(y, v)$.
Case 2: $x \in V\left(H_{i}\right)$ and $y \in V\left(H_{j}\right)$, for every $i \neq j \in\{1, \ldots, n\}$. Let $v \in V\left(H_{i}\right) \cap S^{\prime}$. We have $d(x, v) \leq 2<3 \leq d(y, v)$.
Case 3: $x, y \in V(G)$. Let $x=v_{i}$, for some $i \in\{1, \ldots, n\}$ and $v \in V\left(H_{i}\right) \cap S^{\prime}$. We have $d(x, v)=1<d(y, x)+d(x, v)=d(y, v)$.
Case 4: $x \in V\left(H_{i}\right)$ for some $i \in\{1, \ldots, n\}$ and $y \in V(G)$. Let $y=v_{j}$ for some $j \in\{1, \ldots, n\}$. There exist $v \in V\left(H_{j}\right) \cap S^{\prime}$ such that $d(x, v)=$ $d\left(x, v_{i}\right)+d\left(v_{i}, v_{j}\right)+d\left(v_{j}, v\right)>d\left(v_{j}, v\right)=d(y, v)$.
Then S^{\prime} is a resolving set for $G \odot H$ where $\left|S^{\prime}\right|<|B|$. We have a contradiction with B is a basis of $G \odot H$.

The following theorem determine the metric dimension of the graph G corona H.

Theorem 1. Let G be a connected graph, H be a graph with order at least 2. Then

$$
\operatorname{dim}(G \odot H)= \begin{cases}|G| \operatorname{dim}(H), & \text { if } H \text { contains a dominant vertex; } \\ |G| \operatorname{dim}\left(K_{1}+H\right), & \text { otherwise. }\end{cases}
$$

Proof. Let B be a basis of $G \odot H$. Let H_{i} be a i-th copy of H connected to i-th vertex of G in $G \odot H$.
Case 1: H contains a dominant vertex.
Suppose that $\operatorname{dim}(G \odot H)<|G| \operatorname{dim}(H)$. Let $B_{i}=B \cap V\left(H_{i}\right)$. Since $B \cap$ $V(G)=\emptyset$ (using Lemma 3 (ii)), there exist B_{j} such that $\left|B_{j}\right|<\operatorname{dim}(H)$. It means that every two vertices of H_{j} can be distinguished by only vertices in B_{j}. Therefore, B_{j} is a resolving set for $H_{j}(\cong H)$, a contradiction. Hence, we have $\operatorname{dim}(G \odot H) \geq|G| \operatorname{dim}(H)$. Now, we will prove that $\operatorname{dim}(G \odot H) \leq|G| \operatorname{dim}(H)$. Let W_{i} be a basis of H_{i}. Set $S=\bigcup_{i=1}^{n} W_{i}$. We will show that S is a resolving set of $G \odot H$. Since $S \cap V(G)=\emptyset$, by using the same technique in the proof of

Lemma 3 (ii), we can prove that the set S is a resolving set of $G \odot H$. Hence, $\operatorname{dim}(G \odot H) \leq|S|=\left|\bigcup_{i=1}^{n} W\right|=|G| \operatorname{dim}(H)$.
Case 2: H does not contain a dominant vertex.
This case is proved by a similar way to Case 1 , by considering $\operatorname{dim}\left(K_{1}+H\right)$ instead of $\operatorname{dim}(H)$ and applying Lemma 2 instead of Lemma 1. To prove $\operatorname{dim}(G \odot H) \leq|G| \operatorname{dim}\left(K_{1}+H\right)$, we choose $S^{\prime}=\bigcup_{i=1}^{n} W_{i}^{\prime}$, where W_{i}^{\prime} is a basis of $K_{1}+H_{i}$.

In Theorem 1, the formula of the metric dimension of corona product of graphs depends on the metric dimension of $K_{1}+H$. Caceres et.al. [2] stated the lower bound of metric dimension of join graph $G+H$ as follow.

Theorem B [2] Let G and H be a connected graph. Then

$$
\operatorname{dim}(G+K) \geq \operatorname{dim}(G)+\operatorname{dim}(H)
$$

By using this Caceres's result we obtain the following corollary.
Corollary 1. For any connected graph H, we have

$$
\operatorname{dim}\left(K_{1}+H\right) \geq \operatorname{dim}(H)+1
$$

The lower bound in Corollary 1 is sharp because $H \cong P_{2}$ fulfills the equality. In [1], Buczkowski et. al. determined the metric dimension of the wheel graph $W_{n}=K_{1}+C_{n}$. They stated that $\operatorname{dim}\left(W_{3}\right)=3, \operatorname{dim}\left(W_{4}\right)=\operatorname{dim}\left(W_{5}\right)=2$, $\operatorname{dim}\left(W_{6}\right)=3$, and if $n \geq 7$, then $\operatorname{dim}\left(W_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor$. Caceres et.al. in [2] have determined the metric dimension of the fan graph $F_{n}=K_{1}+P_{n}, \operatorname{dim}\left(K_{1}+P_{1}\right)$ $=\operatorname{dim}\left(P_{2}\right)=1$, $\operatorname{dim}\left(K_{1}+P_{i}\right)=2$ for $i \in\{2,3,4,5,6\}$, and if $n \geq 7$, then $\operatorname{dim}\left(F_{n}\right)=\left\lfloor\frac{2 n+2}{5}\right\rfloor$.

These results and the idea of the distance similar of a dominating set in a graph suggest the metric dimension of corona product of any graph G with a complete graph K_{n}, the graph C_{n}, or the graph P_{n}. Since K_{n} contains a dominant vertex, by using Theorem 1, we have this following corollary.

Corollary 2. Let K_{n} be a complete graph. For $n \geq 2$,

$$
\operatorname{dim}\left(G \odot K_{n}\right)=|G|(n-1)
$$

Since C_{n} and P_{n} do not contain a dominant vertex for $n \geq 7$ then by using Theorem 1, we have this following corollary.

Corollary 3. Let G be a connected graph and H is isomorphic to C_{n} or P_{n}. If $n \geq 7$, then

$$
\operatorname{dim}(G \odot H)=|G|\left\lfloor\frac{2 m+2}{5}\right\rfloor
$$

For $n=3,4,5$, and $6, \operatorname{dim}\left(G \odot C_{n}\right)=k|G|$, with $k=3,2,2$, and 3,respectively. For $n=2,3,4,5$, and $6, \operatorname{dim}\left(G \odot P_{n}\right)=q|G|$, with $q=$ $1,2,2,2$, and 2 , respectively.

We have also known the metric dimension of $K_{1}+S_{n}$, where S_{n} is a star with n pendants. Since the metric dimension of $K_{1}+S_{n}$ is isomorphic to a complete bipartite graph $K_{2, n}$, by using Theorem A (iii), $\operatorname{dim}\left(K_{1}+S_{n}\right)=n$. Hence, we have the following corollary.

Corollary 4. Let S_{n} be a star graph, $n \geq 2$. Then, we have

$$
\operatorname{dim}\left(G \odot S_{n}\right)=|G| n .
$$

3 Corona Product of a Graph and an n-ary Tree

In the this section, we will determine the metric dimension of a joint graph $K_{1}+T$, where T is a n-ary tree. Then by using Theorem 1, we obtain the metric dimension of the corona product of $G \odot T$.

For $T \cong K_{2}$, the joint graph $K_{1}+T \cong C_{3}$. All vertices in C_{3} are the dominant vertices and $\operatorname{dim}\left(C_{3}\right)=2$. For $T \cong S_{n}$, form the previous section, $\operatorname{dim}\left(K_{1}+S_{n}\right)=n$.

Proposition 1. Let T be a tree other than a star. Then, $K_{1}+T$ has exactly one dominant vertex and every resolving set S of $K_{1}+T$ is a subset of T.

Proof. Since S_{n} is the only tree with one dominant vertex then a joint graph $K_{1}+T$, where $T \not \not K_{2}$ or S_{n}, only contain exactly one dominant vertex, i.e the vertex of K_{1}, say v. Let S be a resolving set of $K_{1}+T$. Since v is the only vertex of $K_{1}+T$ at distance 1 to every vertex of T then the representation of v with respect to S is unique. Hence, $v \notin S$. So, $S \subseteq T$.

A rooted tree is a pair (T, r), where T is a tree and $r \in V(T)$ is a distinguished vertex of T called the root. In this paper, we simplify the notation of a rooted tree by T. If $x y \in E(T)$ is an edge and the vertex x lies on the unique path from y to the root, we say that x is the father of y and y is a child of x. A complete n-ary tree T is a rooted tree whose every vertex, except the leaves, has exactly n children.

The i-th level of an n-ary tree T, denoted by T^{i}, is the set of vertices in T at distance i from the root vertex. For u in T^{i}, we said u be on the level i in
an n-ary tree T. Then, the level $0, T^{0}$, contains a single vertex r. The set of children of a vertex u in T^{i-1} is denoted by $T_{\{u\}}^{i}$, and so $T^{i}=\bigcup_{u \in T^{i-1}} T_{\{u\}}^{i}$. The set of vertices at distance at most i and at least k from the root r is denoted by $T_{k}^{i}=\bigcup_{j=k}^{i} T^{j}$.

If all leaves of a complete n-ary tree T are on the same level l then T is called a perfect complete n-ary tree with depth l, denoted by $T(n, l)$. The order of $T(n, l)$ is $n^{0}+n^{1}+\cdots+n^{l}$, and the number of vertices on level i is $\left|T^{i}(n, l)\right|=n^{i}$. From now on, we use the term n-ary tree for a perfect complete n-ary. For $n=1, K_{1}+T(1, l) \cong K_{1}+P_{l+1}=F_{l+1}$ and $\operatorname{dim}\left(K_{1}+T(1, l)\right)=$ $\left\lfloor\frac{2(l+1)+2}{5}\right\rfloor$. For $l=1, K_{1}+T(n, 1) \cong K_{1}+S_{n}=K_{2, n}$ and $\operatorname{dim}\left(K_{1}+T(n, 1)\right)=$ n. So, we will determine the metric dimension of $\operatorname{dim}\left(K_{1}+T(n, l)\right)$ where $T(n, l)$ is an n-ary tree with the depth l for $n \geq 2$ and $l \geq 2$.

Lemma 4. Let S be a resolving set of a graph $K_{1}+T(n, l)$ and $i \in\{1,2, \cdots, l\}$. If $S \cap T^{i+1}(n, l)=\emptyset$ then at least $n-1$ vertices of $T_{\{u\}}^{i}$ must be in S for every u in $T^{i-1}(n, l)$.

Proof. Suppose that there is a vertex u in $T^{i-1}(n, l)$ such that $\left|T_{\{u\}}^{i}(n, l) \cap S\right|<$ $n-1$. Then there are two vertices x, y in $T^{i-1}(n, l)$ but not in S such that they have the same distance (1 or 2) to every vertex of S, a contradiction.

Lemma 4 holds for $i=l$ since all vertices u in $T^{l}(n, l)$ has no children. If $S \cap T^{i+1}(n, l)=\emptyset$ then by using Lemma 4 we have at most one vertex x in $T_{\{u\}}^{i}(n, l)$ but not in S for every u in $T^{i-1}(n, l)$.

Lemma 5. If S be a resolving set of a graph $K_{1}+T(n, l)$ and $i \in\{1,2, \cdots, l\}$ then at least $n^{i}-1$ vertices of $T_{i-1}^{i+1}(n, l)$ must be in S.

Proof. Suppose that $\left|T_{i-1}^{i+1}(n, l) \cap S\right|<n^{i}-1$ for some i. Then, we have

$$
\begin{aligned}
\left|T^{i}(n, l)-S\right| & =\left|T^{i}(n, l)-\left(T^{i}(n, l) \cap S\right)\right| \\
& \geq n^{i}-\left(n^{i}-2-\left|T^{i+1}(n, l) \cap S\right|-\left|T^{i-1}(n, l) \cap S\right|\right) \\
& =\left|T^{i+1}(n, l) \cap S\right|+\left|T^{i-1}(n, l) \cap S\right|+2
\end{aligned}
$$

There are two cases:
Case 1: $\left|T^{i+1}(n, l) \cap S\right|=0$. There are two subcases.
Subcase 1.1: $\left|T^{i-1}(n, l) \cap S\right|=0$.
In this case, $\left|T^{i}(n, l)-S\right| \geq 2$. Hence, we have at least two vertices x and y in $T^{i}(n, l)$ which all of their parents and children are not in S. Then, x and y have the same distance 2 to every vertex of S, a contradiction.
Subcase 1.2: $\left|T^{i-1}(n, l) \cap S\right| \neq 0$.

This means $\left|T^{i}(n, l)-S\right| \geq\left|T^{i-1}(n, l) \cap S\right|+2$. Since, by using Lemma 4, we have at most one vertex x in $T_{\{u\}}^{i}(n, l)$ but not in S for every u in $T^{i-1}(n, l)$ then $\left|T^{i-1}(n, l) \cap S\right|$ vertices in $T^{i-1}(n, l) \cap S$ must have at most $\left|T^{i-1}(n, l) \cap S\right|$ children in $T^{i}(n, l)-S$. Then, there are at least two pairs of parent-child $u x$ and $v y$ where u, v in $T^{i-1}(n, l)-S, x, y$ in $T^{i}(n, l)-S$, and $x \in T_{\{u\}}^{i}(n, l)$, $y \in T_{\{v\}}^{i}(n, l)$. So, x and y have the same distance 2 to every vertex of S, a contradiction.
Case 2: $\left|T^{i+1}(n, l) \cap S\right| \neq 0$. There are two subcases.
Subcase 2.1: $\left|T^{i-1}(n, l) \cap S\right|=0$.
We have $\left|T^{i}(n, l)-S\right| \geq\left|T^{i+1}(n, l) \cap S\right|+2$. Since a vertex w in $T^{i+1} \cap S$ distinguishes two vertices x any y in $T^{i}(n, l)$ where one of them is the parent of w and the other is not, then $\left|T^{i+1}(n, l) \cap S\right|$ vertices of $T^{i+1}(n, l)$ distinguish at most $\left|T^{i+1}(n, l) \cap S\right|$ parents in $T^{i}(n, l)-S$. Hence, we have at least two vertices x and y in $T^{i}(n, l)$ which all of their parents and children are not in S. Then, x and y have the same distance 2 to every vertex of S, a contradiction. Subcase 2.2: $\left|T^{i-1}(n, l) \cap S\right| \neq 0$.
In this subcase, $\left|T^{i}(n, l)-S\right| \geq\left|T^{i+1}(n, l) \cap S\right|+\left|T^{i-1}(n, l) \cap S\right|+2$. By using similar reason to Subcases 1.2 and 2.1, we have $\left|T^{i-1}(n, l) \cap S\right|$ vertices in $T^{i-1}(n, l)-S$ must have at most $\left|T^{i-1}(n, l) \cap S\right|$ children in $T^{i}(n, l)-S$ and $\left|T^{i+1}(n, l) \cap S\right|$ vertices of $T^{i+1}(n, l)$ distinguish at most $\left|T^{i+1}(n, l) \cap S\right|$ parents in $T^{i}(n, l)-S$. Then, we have at least two vertices x and y in $T^{i}(n, l)$ which all of their parents and children are not in S. Then, x and y have the same distance 2 to every vertex of S, a contradiction.

Lemma 5 is also hold for $i=l$ since all vertices u in $T^{l}(n, l)$ has no children. Lemma 4 and 5 give us a procedure to construct a resolving set S of $T(n, l)$ which have a minimal number of vertices. The procedure is done by applying Lemma 4 and 5 from $i=l$ up to $i=1$ consecutively. The minimal condition of a resolving set S in $T(n, l)$ can be reached if we have as many possible $T^{i}(n, l)$'s such that $T^{i}(n, l) \cap S=\emptyset$ and the other levels fulfill Lemma 4 and 5 .

Let S be a resolving set of $K_{1}+T(n, l)$. By using Proposition 1, we have $S \subseteq T(n, l)$. For $i=l$, since all vertices of $T^{l}(n, l)$ have no children then, by using Lemma 4 and 5 , at least $n^{l}-1$ vertices of $T_{l-1}^{l}(n, l)$ must be in S. These vertices can be distributed in levels $T^{l}(n, l)$ and $T^{l-1}(n, l)$ such that

$$
\begin{aligned}
\left|T^{l}(n, l) \cap S\right| & =\underbrace{(n-1)+\cdots+(n-1)}_{n^{l-1} \text { times }} \\
& =n^{l}-n^{l-1}
\end{aligned}
$$

and $\left|T^{l-1}(n, l) \cap S\right|=n^{l-1}-1$ vertices. If we use this distribution, there exists a vertex in $T^{l}(n, l)$ at distance 2 to every vertex of S. We denote this vertex
by $x_{(2,2, \cdots, 2)}$.
To reach a minimal condition for S, we can assume that $T^{l-2}(n, l) \cap S=\emptyset$. By using this assumption, we can reapply Lemma 4 and 5 for $i=l-3$. Thus, we have at least $n^{l-3}-1$ vertices of $T_{l-4}^{l-3}(n, l)$ must be in S. Since $x_{(2,2, \cdots, 2)}$ is in $T^{l}(n, l)$ then we must have at least n^{l-3} vertices of $T_{l-4}^{l-2}(n, l)$ must be in S. We then repeat this process up to level 0 .

By using this procedure, we can construct a minimal resolving set of a $T(n, l)$. This resolving set will contain $\left(n^{l}-1\right)+n^{l-3}+\cdots+n^{i}=\sum_{j=0}^{t} n^{l-3 j}-1$ vertices, where $l=3 t+i, i=0,1,2$. We will prove that this is indeed the metric dimension of $K_{1}+T(n, l)$, where $T(n, l)$ is n-ary tree with a depth l, as stated in the following theorem.

Theorem 2. For $n, l \geq 2, l=3 t+i, t \geq 0$, and $i=0,1,2$, let $T(n, l)$ be a n-ary with a depth l. Then,

$$
\operatorname{dim}\left(K_{1}+T(n, l)\right)=\sum_{j=0}^{t} n^{l-3 j}-1 .
$$

Proof. We will show that $\operatorname{dim}\left(K_{1}+T(n, l)\right) \geq \sum_{j=0}^{t} n^{l-3 j}-1$. Let S be a resolving set of $K_{1}+T(n, l)$. By using Proposition 1 , we have $S \subseteq T(n, l)$. Without losing the generalization, we put $x_{2,2, \cdots, 2}$ in $T^{l}(n, l)$. We will show that $|S| \geq\left(n^{l}-1\right)+n^{l-3}+\cdots+n^{i}=\sum_{j=0}^{t} n^{l-3 j}-1$. Suppose that $|S|<\sum_{j=0}^{t} n^{l-3 j}-$ 1. By using Lemma 5 , it suffices to show that $\left|T_{i-1}^{i+1}(n, l) \cap S\right|=n^{i}-1$ for some $i \in\{1,2, \cdots, l-1\}$ is impossible. If $\left|T_{i-1}^{i+1}(n, l) \cap S\right|=n^{i}-1$ for some $i \in\{1,2, \cdots, l-1\}$ then $\left|T^{i}-S\right|=\left|T^{i+1}(n, l) \cap S\right|+\left|T^{i-1}(n, l) \cap S\right|+1$. We have these four possibilities:
(i.) $\left|T^{i+1}(n, l) \cap S\right|=0$ and $\left|T^{i-1}(n, l) \cap S\right|=0$.
(ii.) $\left|T^{i+1}(n, l) \cap S\right|=0$ and $\left|T^{i-1}(n, l) \cap S\right| \neq 0$.
(iii.) $\left|T^{i+1}(n, l) \cap S\right| \neq 0$ and $\left|T^{i-1}(n, l) \cap S\right|=0$.
(iV.) $\left|T^{i+1}(n, l) \cap S\right| \neq 0$ and $\left|T^{i-1}(n, l) \cap S\right| \neq 0$.

By using similar reason to the proof of Lemma 5 , for all the above possibilities, we have another vertex $x_{(2,2, \cdots, 2)}$ in $T^{i}(n, l)$ where $i \in\{1,2, \cdots, l-1\}$, a contradiction. Hence, we have $\operatorname{dim}\left(K_{1}+T(n, l)\right) \geq \sum_{j=0}^{t} n^{l-3 j}-1$.

Now, we prove the upper bound. For $l=3 t+i, i=0,1,2$, and $j \in$ $\{0,1, \cdots, t\}$, set $W_{l-3 j}$ and $W_{l-1-3 j}$ as follow. $W_{l-3 j}=T^{l-3 j}(n, l)$ except one vertex x in $T_{\{u\}}^{l-3 j}(n, l)$ for every u in $T_{\{u\}}^{l-3 j-1}(n, l)$ where $j \in\{0,1, \cdots, t\}$,
$W_{l-1}=T^{l-1}(n, l)-\{u\}$, and $W_{l-1-3 j}=T^{l-1-3 j}$ where $j \in\{1, \cdots, t\}$. Then, we set $W=\bigcup_{j=0}^{t}\left(W_{l-3 j} \cup W_{l-1-3 j}\right)$. We have

$$
\begin{aligned}
|W| & =\sum_{j=0}^{t}\left|W_{l-3 j}\right|+\sum_{j=0}^{t}\left|W_{l-1-3 j}\right| \\
& =\sum_{j=0}^{t}\left(n^{l-3 j}-n^{l-1-3 j}\right)+\left(n^{l-1}-1\right)+\sum_{j=1}^{t}\left(n^{l-1-3 j}\right) \\
& =\sum_{j=0}^{t} n^{l-3 j}-1
\end{aligned}
$$

We will prove that W is a resolving set of $K_{1}+T(n, l)$. The vertex K_{1} has distance 1 to every vertex of W, which is a unique representation with respect to W. Since every vertex in $T^{l-3 j}(n, l)-W_{l-3 j}$ have distance 1 to their parent in $W_{l-1-3 j}$ and 2 to other vertices of W, except for one vertex in $T^{l}(n, l)-W_{l}$, having a parent in $T^{l-1}(n, l)$. Thus, x have a unique representation with respect to W for every x in $T^{l-3 j}(n, l)-W_{l-3 j}$. For a vertex in $T^{l}(n, l)$, this vertex has distance 2 to every vertex of S. This is also a unique representation with respect to W. For a vertex in $T^{l-1}(n, l)$, this vertex have distance 1 to each of their children in W_{l}. For every vertex z in $T^{l-3 j-2}(n, l)$ has distance 1 uniquely to every their children in $W_{l-3 j-2}(n, l)$. Then, all of vertices in $K_{1}+T(n, l)$ have distinct representation with respect to W. Hence, W is a resolving set of $K_{1}+T(n, l)$. Therefore, $\operatorname{dim}\left(K_{1}+T(n, l)\right) \leq \sum_{j=0}^{t} n^{l-3 j}-1$.

Let B be a basis of graph $K_{1}+T(n, l)$, where $T(n, l)$ is a n-ary tree with a depth l, for $n \geq 2, l=3 t+i, t \geq 0$, and $i=0,1,2$. From Lemma 4 and Theorem 2, we assume that a vertex $x_{(2,2, \cdots, 2)}$ in $T^{l}(n, l)$. There are n^{l} possibilities for the position of $x_{(2,2, \cdots, 2)}$ in $T^{l}(n, l)$. But these bases are unique up to isomorphism. The position of $x_{(2,2, \cdots, 2)}$ can also be moved to level $T^{l-3 j}$, $j=1, \cdots, t$. For each of these levels, the basis form a unique basis up to isomorphism. Since there are $t+1$ ways to put $x_{(2,2, \cdots, 2)}$ in $T(n, l)$ then there are $t+1$ different bases of $K_{1}+T$ (up to isomorphism).

Since a tree which is not isomorphic to K_{2} and S_{n} has no dominant vertices, by using Theorem 1 and 2 , we have the following corollary.

Corollary 5. For $n, l \geq 2, l=3 t+i, t \geq 0$, and $i=0,1,2$, let G be a connected graph and $T(n, l)$ be a n-ary tree with a depth l. Then,

$$
\operatorname{dim}(G \odot T(n, l))=|G|\left(\sum_{j=0}^{t} n^{l-3 j}-1\right) .
$$

Acknowledgment

This research partially supported by Penelitian Program Doktor 2010 No. 566/K01.12.2/KU/2010, Higher Education Directorate, Indonesia

References

[1] P.S. Buczkowski, G. Chartrand, C. Poisson, and P. Zhang, On k dimensional graphs and their bases, Period. Math. Hungar., 46:1 (2003), pp. 9-15.
[2] J. Cáceres, C. Hernando, M. Mora, M.L. Puertas, I.M. Pelayo and C. Seara, On the metric dimension of some families of graphs, preprint.
[3] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, and D.R. Wood, On the metric dimension of cartesian products of graphs, Siam J. Discrete Math., 21:2 (2007), pp. pp. 423-441.
[4] G. Chartrand, and L. Lesniak, Graphs and Digraphs, 3rd ed., Chapman and Hall/CRC, 2000.
[5] G. Chartrand, L. Eroh, M.A. Johnson, and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), pp. 99-113.
[6] G. Chartrand and P. Zhang, The theory and appllications of resolvability in graphs: a survey, Congr. Numer., 160 (2003), pp. 47-68.
[7] M.R. Garey and D.S. Johnson, Computers and Intractability: a guide to the theory of NP-completeness, W.H. Freeman, California, 1979.
[8] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars. Combin., 2 (1976), pp. 191-195.
[9] C. Hernando, M. Mora, I.M. Pelayo, C. Seara, and D.R. Wood, Extremal Graph Theory for Metric Dimension and Diameter, http://arXiv.org/ abs/0705.0938v1, (2007), pp. 1-26.
[10] H. Iswadi, E.T. Baskoro, R. Simanjuntak, and A.N.M. Salman, The metric dimensions of graphs with pendant edges, J. Combin. Math. Combin. Comput. 65 (2008), pp. 139-145.
[11] H. Iswadi, E.T. Baskoro, R. Simanjuntak, and A.N.M. Salman, Metric dimension of amalgamation of cycles, Far East Journal of Mathematical Sciences (FJMS), 41:1 (2010), pp. 19-31.
[12] H. Iswadi, E.T. Baskoro, R. Simanjuntak, A.N.M. Salman, The resolving graph of amalgamation of cycles, Utilitas Mathematica, 83 (2010), pp. 121132
[13] I. Javaid, M.T. Rahman, and K. Ali, Families of reguler graphs with constant metric dimension, Util. Math., 75 (2008), pp. 21-33.
[14] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), pp. 217-229.
[15] P. Manuel, B. Rajan, I. Rajasingh, and C.M. Mohan, Landmarks in torus networks, J. Discrete Math. Sci. Cryptogr., 9:2 (2006), pp. 263-271.
[16] P. Manuel, B. Rajan, I. Rajasingh, and C.M. Mohan, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms, 6 (2008), pp. 20-27.
[17] V. Saenpholphat and P. Zhang, Some results on connected resolvability in graphs, Congr. Numer., 158 (2002), pp. 5-19.
[18] S.W. Saputro and H. Assiyatun and R. Simanjuntak and S. Uttunggadewa and E.T. Baskoro and A.N.M. Salman and M. Bača, The metric dimension of the composition product of graphs, preprint.
[19] P.J. Slater, Leaves of trees, Congr. Numer., 14 (1975), pp. 549-559.

