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Abstract

For an ordered set W = {w1, w2, · · · , wk} of vertices and a vertex

v in a connected graph G, the representation of v with respect to

W is the ordered k-tuple r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk))

where d(x, y) represents the distance between the vertices x and y.

The set W is called a resolving set for G if every vertex of G has

a distinct representation. A resolving set containing a minimum

number of vertices is called a basis for G. The dimension of G,

denoted by dim(G), is the number of vertices in a basis of G. A

resolving set W of G is connected if the subgraph 〈W 〉 induced by

W is a nontrivial connected subgraph of G. The connected resolving

number is the minimum cardinality of a connected resolving set in a

graph G, denoted by cr(G). A cr-set of G is a connected resolving

set with cardinality cr(G). A connected graph H is a resolving graph

if there is a graph G with a cr-set W such that 〈W 〉 = H. Let {Gi}
be a finite collection of graphs and each Gi has a fixed vertex voi

called a terminal. The amalgamation Amal{Gi, voi} is formed by

taking of all the Gi’s and identifying their terminals. In this paper,

we determine the connected resolving number and characterize the

resolving graphs of amalgamation of cycles.

1 Introduction

In this paper we consider finite, simple, and connected graphs. The vertex
and edge sets of a graph G are denoted by V (G) and E(G), respectively.
For a further reference please see Chartrand and Lesniak [3].
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The distance d(u, v) between two vertices u and v in a connected graph
G is the length of a shortest u− v path in G. For an ordered set W = {w1,
w2, · · · , wk} ⊆ V (G), we refer to the ordered k-tuple r(v|W ) = (d(v, w1),
d(v, w2), · · · , d(v, wk)) as the (metric) representation of v ∈ V (G) with
respect to W. The set W is called a resolving set for G if r(u|W ) = r(v|W )
implies u = v for all u, v ∈ G. A resolving set with minimum cardinality is
called a minimum resolving set or a basis. The metric dimension of a graph
G, dim(G), is the number of vertices in a basis for G. To determine whether
W is a resolving set for G, we only need to investigate the representations
of the vertices in V (G)\W , since the representation of each wi ∈ W has ’0’
in the ith-ordinate; and so it is always unique.

The first papers discussing the notion of a (minimum) resolving set
were written by Slater in [19] and [20]. Slater introduced the concept of
a resolving set for a connected graph G under the term location set. He
called the cardinality of a minimum resolving set by the location number
of G. Independently, Harary and Melter [8] introduced the same concept,
but used the term metric dimension instead.

In general, finding a resolving set for arbitrary graph is a difficult prob-
lem. In [7], it is proved that the problem of computing the metric dimension
for general graphs is NP -complete. Thus, researchers in this area often
studied the metric dimension for particular classes of graphs or character-
ized graphs having certain metric dimension. Some results on the joint
graph and cartesian product graph have been obtained by Caceres et al.
[1], Khuller et al. [13], and Chartrand [4]. Iswadi et.al obtained some
results on the corona product of graphs [10, 11]. Suhadi et al. obtained
some results on the decomposition product of graphs [23]. Iswadi et al.
determined the metric dimension of antipodal and pendant free graph [12].
Suhadi et al. found some results on the metric dimension of some type
of regular graphs [21, 22]. And, Chartrand et al. [4] has characterized all
graphs having metric dimensions 1, n−1, and n−2. They also determined
the metric dimensions of some well known families of graphs such as paths,
cycles, complete graphs, and trees.

The study of finding resolving sets of graphs can also be conducted
by considering particular restrictions for the resolving sets. One of the
restrictions is connectivity; in [16] Saenpholphat and Zhang introduced the
concept of connected resolvability. They defined the following terms. A
resolving set W of G is connected if the subgraph 〈W 〉 induced by W is a
nontrivial connected subgraph of G. The connected resolving number cr(G)
is the minimum cardinality of a connected resolving set in G. A cr-set of G
is a connected resolving set with cardinality cr(G). Since every connected
resolving set is a resolving set, then dim(G) ≤ cr(G) for any connected
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graph. A connected graph H is a resolving graph if there is a graph G with
a cr-set W such that 〈W 〉 = H. Additionally, they observed the following.

Observation A [16] Let G be a graph and U ⊆ V (G). If U contains a
resolving set of G as its subset, then U is also a resolving set of G.

Observation B [16] Let G be a connected graph. Then dim(G) = cr(G) if
and only if G contains a connected basis.

Further properties of connected resolving sets in a graph and its relation
with the basis of the graph can be found in [5, 15, 17] and [18].

The following identification graph G = G[G1, G2, v1, v2] is defined in
[14].

Definition C Let G1 and G2 be the non trivial connected graphs where
v1 ∈ G1 and v2 ∈ G2. An identification graph G = G[G1, G2, v1, v2] is
obtained from G1 and G2 by identifying v1 and v2 such that v1 = v2 in G.

Poisson et.al. [14] determined the lower and upper bound of metric
dimension of G[G1, G2, v1, v2] in terms of dim(G1) and dim(G2) as stated
in the following theorems.

Theorem D Let G1 and G2 be the non trivial connected graphs with v1 ∈
G1 and v2 ∈ G2 and let G = G[G1, G2, v1, v2]. Then

dim(G) ≥ dim(G1) + dim(G2)− 2.

For the upper bound, we define an equivalence class and binary function
first. For a set W of vertices of G, define a relation on V (G) with respect to
W by uRv if there exists a ∈ Z such that r(v|W ) = r(u|W ) + (a, a, · · · , a).
It is easy to check that R is an equivalence relation on V (G). Let [u]W
denote the equivalence class of u with respect to W . Then

v ∈ [v]W if and only if r(v|W ) = r(u|W ) + (a, a, · · · , a)

for some a ∈ Z. For a non trivial connected graph G, define a binary
function fG : V (G) → Z with

fG(v) =
{

dim(G), if v is not a basis vertex of G;
dim(G)− 1, otherwise.
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Theorem E Let G1 and G2 be the non trivial connected graphs with v1 ∈
G1 and v2 ∈ G2 and let G = G[G1, G2, v1, v2]. Suppose that G1 contains a
resolving set W1 such that [v1]W1 = {v1}. Then

dim(G) ≤ |W1|+ fG2(v2)

=
{ |W1|+ dim(G2), if v2 is not a basis vertex of G2;
|W1|+ dim(G2)− 1, otherwise.

In particular, if W1 is a basis for G1, then

dim(G) ≤
{

dim(G1) + dim(G2), if v2 is not a basis vertex of G2;
dim(G1) + dim(G2)− 1, otherwise.

In this paper, we determine the metric dimension, the connected re-
solving number, and characterize the resolving graphs of amalgamation of
cycles.

2 Amalgamation of Cycles

The following definition of amalgamation of graphs is taken from [2].

Definition F Let {Gi} be a finite collection of graphs and each Gi has
a fixed vertex voi called a terminal. The amalgamation Amal{Gi, voi} is
formed by taking of all the Gi’s and identifying their terminals.

Definition F is a generalization of Definition C. If the collection of graphs
in Definition F only consist two graphs then we get Definition F is exactly
Definition C.

We could consider amalgamation of cycles; that is Amal{Gi, voi} where
Gi = Cn for all i. In this particular amalgamation, the choice of vertex voi

is irrelevant. So, for simplification, we can denote this amalgamation by
(Cn)t, where t denotes the number of cycle Cn. For t = 1, the graph (Cn)1
is the cycle Cn. For n = 3, the graph (C3)t is called the friendship graph
or the Dutch t-windmill [6].

In this paper, we consider a generalization of (Cn)t where the cycles
under consideration may be of different lenghts. We denote this amalga-
mation by Amal{Cni}, 1 ≤ i ≤ t, t ≥ 2. We call every Cni (including the
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terminal) in Amal{Cni
} as a leaf and a path Pni−1 obtained from Cni

by
deleting the terminal as a nonterminal path.

Throughout this paper, we will follow the following notations and la-
bels for cycles, nonterminal paths, and vertices in Amal{Cni

}. For odd ni,
ni = 2ki + 1, ki ≥ 1 and for the terminal vertex x, we label all vertices in
each leaf Cni

such that

Cni = xvi
1v

i
2 · · · vi

ki
wi

ki
wi

ki−1 · · ·wi
1x,

this will give the nonterminal path

Pni−1 = vi
1v

i
2 · · · vi

ki
wi

ki
wi

ki−1 · · ·wi
1.

For even ni, ni = 2ki + 2, ki ≥ 1, and for the terminal vertex x, we
define the labels of all vertices in each leaf Cni as follow

Cni = xvi
1v

i
2 · · · vi

ki
uiwi

ki
wi

ki−1 · · ·wi
1x,

which leads to the following labeling of the nonterminal path

Pni−1 = vi
1v

i
2 · · · vi

ki
uiwi

ki
wi

ki−1 · · ·wi
1.

Iswadi et. al [10] characterized the resolving set and determined the
metric dimension of amalgamation of cycles Amal{Cni} as stated in the
following lemma and theorem.

Lemma G Let S be a resolving set of Amal{Cni}. Then |Pni−1 ∩ S| ≥ 1,
for each i.

Theorem H If Amal{Cni} is an amalgamation of t cycles that consists of
t1 number of odd cycles and t2 number of even cycles, then

dim(Amal{Cni}) =
{

t1, t2 = 0;
t1 + 2t2 − 1, otherwise.

One of the natural questions we could pose after proving Theorem H
is: Are there any bases other than the bases we constructed in the proof
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of Theorem H? Let the number of different basis of G be denoted by ]G.
Iswadi et. al [9] also determined the number of different basis of Amal{Cni}
as stated in the following theorem.

Theorem I If Amal{Cni} is an amalgamation of t cycles that consists of
t1 number of odd cycles and t2 number of even cycles, then

]Amal{Cni} =

{
2t−1

(∑t
i=1(ni − 1)− 2

)
, t2 = 0;

2t1 (nt1+1 − 1)
∏t

j=t1+2 (C(nj − 1, 2)− 2C(kj , 2)) , otherwise.

where C(b, a) is the total number of combinations of b objects taken a.

3 Resolving graph of amalgamation of cycles

By considering all bases of amalgamation of cycles identified in [9], we will
show that Amal{Cni

} contains no connected basis.

Theorem 1. Amal{Cni} has no connected basis.

Proof. Let x be a terminal vertex of Amal{Cni}. By direct inspection to
all of bases B of Amal{Cni}, we have x /∈ B. It is easy to show that x is a
cut-vertex of Amal{Cni}. Since x /∈ B, where B is a basis of Amal{Cni},
x is a cut-vertex of Amal{Cni}, and every nonterminal path Pni−1 must
contain at least one vertex of every resolving set of Amal{Cni} then the
subgraph 〈B〉 must be disconnected.

Next, we will determine the connected resolving number and the resolv-
ing graph of an amalgamation of cycles. Since every basis B of Amal{Cni}
is unconnected then we must choose a resolving set other than a basis of
Amal{Cni} to form a connected resolving graph. From the proof of The-
orem 1, x must be contained in any connected resolving set. Hence, the
connected resolving set of Amal{Cni} is

W = S ∪ {x},

where S ⊆ ⋃t
i=1 Pni−1.
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Lemma 1. Let S be a connected resolving set and Pni−1 be a nonterminal
path of Amal{Cni} with ni ≥ 4. If |Pni−1∩S| = 1 for some i then Pni−1∩S
= {vi

1} or {wi
1}.

Proof. Let x be a terminal vertex of Amal{Cni
}. Let u ∈ Pni−1 ∩ S.

Suppose that u 6= vi
1 and wi

1. Since ni ≥ 4 then u will be one of vi
a with

2 ≤ a ≤ ki, or wi
a with 2 ≤ a ≤ ki, or ui. For each case, u is not adjacent

to x, which is a contradiction with S being a connected resolving set of
Amal{Cni

}.

Lemma 2. Let S be a connected resolving set of Amal{Cni
}. Let Pni−1

and Pnj−1 be a pair of nonterminal paths of Amal{Cni
} with ni, nj ≥ 4.

Then |(Pni−1 ∪ Pnj−1) ∩ S| ≥ 3.

Proof. Let x be a terminal vertex of Amal{Cni
}. Since S is a resolving set of

Amal{Cni
}, by using Lemma H, we have |(Pni−1∪Pnj−1)∩S| ≥ 2. Suppose

that |(Pni−1 ∪ Pnj−1) ∩ S| = 2. Let u ∈ Pni−1 ∩ S and v ∈ Pnj−1 ∩ S. By
using Lemma 1, u = vi

1 or wi
1 and v = vj

1 or wj
1. Without loss of generality,

let u = vi
1 and v = vj

1. Since ni, nj ≥ 4, then wi
1 and wj

1 have the same
distance to every z ∈ S, d(wi

1, z) = d(wj
1, z), a contradiction with S being

a connected resolving set in Amal{Cni}. Therefore, |(Pni−1 ∪ Pnj−1) ∩ S|
≥ 3.

Theorem 2. If Amal{Cni} is the amalgamation of r cycles that consists
of r1 number of cycles C3 and r2 number of cycles Cni with ni ≥ 4, then

cr(Amal{Cni}) =
{

r1 + 1, r2 = 0;
r1 + 2r2, otherwise.

Proof. Let B be a connected resolving set with minimum cardinality and x
a terminal vertex of Amal{Cni}. Let S ⊆ ⋃r

i=1 Pni−1 be a set of Amal{Cni}
and W = S ∪{x}. We label all the leaves Cni of Amal{Cni} in such a way
that Cni ’s with 1 ≤ i ≤ r1, are C3 and Cnj ’s, with r1 +1 ≤ j ≤ r1 +r2 = r,
are cycles with length more than three.

Case 1. For r2 = 0. Since W is a resolving set of Amal{Cni} then,
by using Lemma H, we have |⋃r

i=1(Pni−1 ∩W )| = |Pn1−1 ∩W | + · · · +
|Pn2−1 ∩W | ≥ r1. Since x ∈ W and x /∈ ⋃r

i=1 Pni−1 then |W | ≥ r1 + 1.
Therefore, |B| ≥ r1 +1. Choose a set W =

⋃r1
i=1 Si∪{x}, where Si = {wi

1}
with 1 ≤ i ≤ r1. The representations of other vertices in Amal{Cni} by W
are
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r(wi
1|W ) = (2, 2, 1︸︷︷︸

coord. of Si

, 2, 2, 1) with 1 ≤ i ≤ r1 = r.

Therefore, all vertices of Amal{Cni} have distinct representations by W .
Hence, W is a connected resolving set of Amal{Cni

}. Since B is a minimum
connected resolving set of Amal{Cni} then |B| ≤ r1 + 1. So, we have |B|
= r1 + 1.

Case 2. For r2 ≥ 1. By using Lemmas H and 2, we have |⋃r
i=1 Pni−1 ∩

W | = |Pn1−1 ∩ W | + · · · + |Pn2−1 ∩ W | ≥ r1 + 2r2 − 1. By a similar
argument as in Case 1, since x ∈ W and x /∈ ⋃r

i=1 Pni−1 then W ≥ r1+2r2.
Therefore, we have |B| ≥ r1 + 2r2. Next, we will show that |B| ≤ r1 + 2r2.
Choose a set W =

⋃r
i=1 Si ∪ {x} with

Si = {wi
1}, with 1 ≤ i ≤ r1,

Sr1+1 = {wr1+1
1 },

Sj = {vj
1, w

j
1}, with r1 + 2 ≤ j ≤ r.

The representations of the other vertices of Amal{Cni} by W are as
follow.

For 1 ≤ i ≤ r1,

r(vi
1|W ) = (2, · · · , 2, 1︸︷︷︸

coord. of Si

, 2, · · · , 2, 1) with 1 ≤ i ≤ r1 + 1.

For j = r1 + 1, nj = 2kj + 1 with kj ≥ 2,

r(vr1+1
kj

|W ) = (kj + 1, · · · , kj + 1, kj︸︷︷︸
coord. of Sr1+1

, kj + 1, · · · , kj + 1, kj),

r(vr1+1
l |W ) = (l + 1, · · · , l + 1, l + 1︸ ︷︷ ︸

coord. of Sr1+1

, l + 1, · · · , l + 1, l)

with 1 ≤ l ≤ kj − 1, and

r(wr1+1
l |W ) = (l + 1, · · · , l + 1, l − 1︸ ︷︷ ︸

coord. of Sr1+1

, l + 1, · · · , l + 1, l)

with 2 ≤ l ≤ kj .
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For j = r1 + 1, nj = 2kj + 2 with kj ≥ 2,

r(ur1+1|W ) = (kj + 2, · · · , kj + 2, kj︸︷︷︸
coord. of Sr1+1

, kj + 2, · · · , kj + 2, kj + 1),

r(vr1+1
l |W ) = (l + 1, · · · , l + 1, l + 1︸ ︷︷ ︸

coord. of Sr1+1

, l + 1, · · · , l + 1, l)

with 1 ≤ l ≤ kj , and

r(wr1+1
l |W ) = (l + 1, · · · , l + 1, l − 1︸ ︷︷ ︸

coord. of Sr1+1

, l + 1, · · · , l + 1, l)

with 2 ≤ l ≤ kj .

For r1 + 2 ≤ j ≤ r, nj = 2kj + 1 with kj ≥ 2,

r(vj
kj
|W ) = (kj + 1, · · · , kj + 1, kj − 1, kj︸ ︷︷ ︸

coord. of Sj

, kj + 1, · · · , kj + 1, kj),

r(wj
kj
|W ) = (kj + 1, · · · , kj + 1, kj , kj − 1︸ ︷︷ ︸

coord. of Sj

, kj + 1, · · · , kj + 1, kj),

r(vj
l |W ) = (l + 1, · · · , l + 1, l − 1, l + 1︸ ︷︷ ︸

coord. by Sj

, l + 1, · · · , l + 1, l)

with 1 ≤ l ≤ kj − 1, and

r(wj
l |W ) = (l + 1, · · · , l + 1, l + 1, l − 1︸ ︷︷ ︸

coord. of Sj

, l + 1, · · · , l + 1, l)

with 1 ≤ l ≤ kj − 1.

For r1 + 2 ≤ j ≤ r, nj = 2kj + 2 with kj ≥ 1,

r(uj |W ) = (kj + 2, · · · , kj + 2, kj , kj︸ ︷︷ ︸
coord. of Sj

, kj + 2, · · · , kj + 2, kj + 1),

r(vj
l |W ) = (l + 1, · · · , l + 1, l − 1, l + 1︸ ︷︷ ︸

coord. of Sj

, l + 1, · · · , l + 1, l)

with 1 ≤ l ≤ kj , and

r(wj
l |W ) = (l + 1, · · · , l + 1, l + 1, l − 1︸ ︷︷ ︸

coord. of Sj

, l + 1, · · · , l + 1, l)

with 1 ≤ l ≤ kj .
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Thus, all vertices of Amal{Cni
} have distinct representations by W .

Therefore, W is a connected resolving set of Amal{Cni} and so, |B| ≤
r1 + 2r2, which complete the proof.

A graph G′ is called a subdivision of a graph G if one or more vertices of
degree 2 are inserted into one or more edges of G. In the following theorem,
we state all possible resolving graphs of Amal{Cni}.

Theorem 3. The resolving graph H of Amal{Cni
} is either a path, a star,

or a subdivision of a star.

Proof. Let x be the terminal vertex of Amal{Cni
}. Assume Amal{Cni

}
consists of r cycles with r1 number of cycles C3 and r2 number of cycles
Cni

with ni ≥ 4. Let W be a connected resolving set with minimum
cardinality of Amal{Cni

}. Let Pni−1 and Pnj−1 be the two nonterminal
paths of Amal{Cni}.

Case 1. For r = 2, there are three subcases; when r1 = 2, r2 = 0 or
r1 = 1, r2 = 1 or r1 = 0, r2 = 2. By using Lemma H, Lemma 1, and
Theorem 2, for all of these subcases, W = {x, a, b}, where a = v1

1 or w1
1

and b = v2
1 or w2

1. The subgraph 〈W 〉 is a path P3 which contains 3 vertices.

Case 2. For r ≥ 3, there are two subcases.
Claim: If ni > 4 and |Pni−1∩W | = 2 then Pni−1∩W = {vi

1, w
i
1}. By using

Theorem 2, there is one leaf Cnj such that nj ≥ 4 and |Pnj−1∩W | = 1. By
using symmetry property, assume that Pni−1 ∩W = {vi

1, v
i
2} and Pnj−1 ∩

W = {vj
1}. Hence, d(wi

1, z) = d(wj
1, z) for all z ∈ W , a contradiction with

W being a resolving set. Subcase 2.1, there is no leaf Cni with ni = 4. By
using Lemma H, Theorem 2, and the previous claim, W = {x, a1, · · · , at−1}
where d(ai, x) = 1 with 1 ≤ i ≤ r − 1. Hence, the subgraph 〈W 〉 is a star
Sr−1 which contains r vertices. Subcase 2.2, there are some leaves Cni with
ni = 4. If r2 = 1, by using similar reasons with Subcase 2.1, then we also
have the subgraph 〈W 〉 as a star Sr−1 which contains r vertices. If r2 ≥ 2
and W = {x, a1, · · · , ar−1} is a connected resolving set with minimum
cardinality of Amal{Cni} then d(ai, x) = 1 for all ai ∈ W or there are two
vertices a, b ⊆ W such that d(a, x) = 1 and d(b, x) = 2. The previous gives
the subgraph 〈W 〉 as a star Sr−1 which contain r vertices and the last gives
the subgraph 〈W 〉 as a subdivision of a star Sm for some m.
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