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a b s t r a c t

A set of vertices W resolves a graph G if every vertex is uniquely determined by its
coordinate of distances to the vertices in W . The minimum cardinality of a resolving set
of G is called themetric dimension of G. In this paper, we consider a graphwhich is obtained
by the lexicographic product between two graphs. The lexicographic product of graphs
G and H , which is denoted by G ◦ H , is the graph with vertex set V (G) × V (H) =

{(a, v) |a ∈ V (G) , v ∈ V (H)}, where (a, v) is adjacent to (b, w) whenever ab ∈ E (G),
or a = b and vw ∈ E (H). We give the general bounds of the metric dimension of a
lexicographic product of any connected graph G and an arbitrary graph H . We also show
that the bounds are sharp.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all graphs G are finite and simple. We denote by V the vertex set of G and by E the edge set
of G. The distance between two vertices u, v ∈ V (G), denoted by d (u, v), is the length of a shortest u − v path in G. Let
W = {w1, w2, . . . , wk} be an ordered subset of V (G). For v ∈ V (G), a representation of v with respect toW is defined as the
k-tuple r (v|W ) = (d (v, w1) , d(v, w2), . . . , d (v, wk)). The set W is called a resolving set of G if every two distinct vertices
x, y ∈ V (G) satisfy r (x|W ) ≠ r (y|W ). A basis of G is a resolving set of G with the minimum cardinality, and the metric
dimension of G refers to its cardinality and is denoted by β (G).

Themetric dimension problemswere first studied by Harary andMelter [6], and independently by Slater [18,19]. Khuller
et al. [11] studied the metric dimension motivated by the robot navigation in a graph space. A resolving set for a graph
corresponds to the presence of distinctively labeled ‘‘landmark’’ nodes in the graph. It is assumed that a robot can detect the
distance to each node of the landmarks, and hence uniquely determine its location in the graph.

Garey and Johnson [5], and also Khuller et al. [11], showed that determining the metric dimension of an arbitrary graph
is an NP-complete problem. However, Chartrand et al. [3] have obtained some results as follows.

Theorem 1 ([3]). Let G be a connected graph of order n ≥ 2. Then

1. β (G) = 1 if and only if G = Pn.
2. β (G) = n − 1 if and only if G = Kn.
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3. For n ≥ 3, β (Cn) = 2.
4. β (G) = n − 2 if and only if G is either Kr,s for r, s ≥ 1, or Kr + Ks for r ≥ 1, s ≥ 2, or Kr + (K1 ∪ Ks) for r, s ≥ 1.

Many researchers have also considered this problem for certain particular classes of graphs, such as trees [3,6,11], fans [2],
wheels [1,2,17], complete n-partite graphs [3,16], unicyclic graphs [14], grids [13], honeycomb networks [12], circulant
networks [15], Cayley graphs [4], graphs with pendants [9], amalgamation of cycles [10], and Jahangir graphs [20].

There are also some results of the metric dimension problem for graphs resulting from operations on graphs. We recall
that the joint graph of G and H , which is denoted by G+H , is a graph with V (G+H) = V (G) ∪ V (H) with V (G) ∩ V (H) = ∅

and E(G + H) = E(G) ∪ E(H) ∪ {xy|x ∈ V (G), y ∈ V (H)}. Some results on certain joint product graphs have been proved in
[1,2,17].

Caceres et al. [2], Khuller et al. [11], and Melter et al. [13] have determined the metric dimension of graphs which are
obtained by the Cartesian product of two or more graphs. Some graphs which are constructed by the corona product of two
graphs have been studied in [9,8,21]. In this paper, we study the metric dimension of the lexicographic product of connected
graph G and an arbitrary graph H . We give general bounds of the metric dimension and also show that the bounds are
sharp.

2. The main results

The lexicographic product of graphs G and H , which is denoted by G ◦ H [7], is the graph with vertex set V (G) × V (H) =

{(a, v) |a ∈ V (G) , v ∈ V (H)}, where (a, v) is adjacent to (b, w) whenever ab ∈ E (G), or a = b and vw ∈ E (H). For any
vertex a ∈ V (G) and b ∈ V (H), we define the vertex set H (a) = {(a, v) |v ∈ V (H)} and G (b) = {(v, b) |v ∈ V (G)}.

Let G be a connected graph with |V (G)| ≥ 2 and H be an arbitrary graph containing k components H1,H2, . . . ,Hk and
|V (H)| ≥ 2. For a ∈ V (G) and 1 ≤ i ≤ k, we define the vertex set Hi(a) = {(a, v) | v ∈ V (Hi)}. We obtain the following
propositions.

Proposition 1. Let a and b be two distinct vertices in G. Every two different vertices x, y ∈ H (a) satisfy d (x, z) = d (y, z)
whenever z ∈ H (b).

Proof. Let V (H) = {h1, h2, . . . , h|V (H)|}. Let x = (a, hp), y = (a, hq), and z = (b, hr) where p, q, r ∈ {1, 2, . . . , |V (H)|} and
p ≠ q. Note that, by the definition of G ◦ H , every vertex of H(u) is adjacent to every vertex of H(v) for uv ∈ E(G). Now, for
a ∈ V (G), let ua be a projection of all vertices of H(a). Let Q be a graph where V (Q ) = {ua | a ∈ V (G)} and uaub ∈ E(Q )
whenever ab ∈ E(G). So, the distance between x and z, d(x, z), in G ◦H is equal to the distance between ua and ub, d(ua, ub),
in Q . Since a vertex y is also projected to ua, we obtain that d(y, z) = d(ua, ub) = d(x, z). �

Proposition 2. For a ∈ V (G) and i, j ∈ {1, 2, . . . , k}with i ≠ j, every two different vertices x, y ∈ Hj(a) satisfy d(x, z) = d(y, z)
whenever z ∈ Hi(a).

Proof. Let b ∈ V (G) and ab ∈ E(G). Since all vertices of H(a) are adjacent to all vertices of H(b), for w ∈ H(b), we obtain
that d(x, z) = d(x, w) + d(w, z) = 2 = d(y, w) + d(w, z) = d(y, z). �

By considering Propositions 1 and 2, in order to find a resolving set of G◦H wemust find a subset Si(a) ⊆ Hi (a) for every
i ∈ {1, 2, . . . , k} and |V (Hi)| ≥ 2, such that every two distinct vertices x, y ∈ Hi (a) satisfy r (x|Si(a)) ≠ r (y|Si(a)), which
can be seen in the following lemma.

Lemma 1. Let G be a connected graphwith |V (G)| ≥ 2 andH be an arbitrary graph containing k ≥ 1 componentsH1,H2, . . . ,Hk
and |V (H)| ≥ 2. Let W be a basis of G ◦ H. For any vertex a ∈ V (G), if Si(a) = W ∩ Hi(a) for every i ∈ {1, 2, . . . , k} where
V (Hi) ≥ 2, then Si(a) ≠ ∅. Moreover, if Bi is a basis of Hi, then |Si(a)| ≥ |Bi|.

Proof. Suppose that there exists a ∈ V (G) such that there exists i ∈ {1, 2, . . . , k} which is satisfying |V (Hi)| ≥ 2 and
Si(a) = ∅. Since |V (Hi)| ≥ 2, by Propositions 1 and 2, there exist two different vertices (a, x), (a, y) ∈ Hi(a) such that
r((a, x)|W ) = r((a, y)|W ), a contradiction.

Now, suppose that Si(a) = {(a, s1) , (a, s2) , . . . , (a, st)} where t < |Bi| for some basis Bi of Hi. Let us consider S ′
=

{s1, s2, . . . , st} subset ofV (Hi). Since
S ′
 < |Bi|, there exist twodistinct vertices x, y ∈ V (Hi) such that r


x|S ′


= r


y|S ′


. So,

for every p ∈ {1, 2, . . . , t}, we have d

x, sp


= d


y, sp


. Note that, for every two distinct vertices u, v ∈ V (Hi), if d(u, v) ≤ 2

then d((a, u), (a, v)) = d(u, v), otherwise d((a, u), (a, v)) = 2. Thus we obtain d

(a, x) ,


a, sp


= d


(a, y) ,


a, sp


, and

so r ((a, x) |Si(a)) = r ((a, y) |Si(a)), a contradiction. �

For a graph H containing singleton components, we obtain the lemma below.

Lemma 2. Let G be a connected graphwith |V (G)| ≥ 2 andH be an arbitrary graph containing k ≥ 1 componentsH1,H2, . . . ,Hk
where 1 ≤ |V (H1)| ≤ |V (H2)| ≤ · · · ≤ |V (Hk)| and |V (H)| ≥ 2. Let W be a basis of G◦H. For any vertex a ∈ V (G), let W (a) =

W ∩H(a). If H contains m ≥ 1 singleton components, thenW (a) contains at least m−1 vertices of H1(a)∪H2(a)∪· · ·∪Hm(a).

Proof. For m = 1, let a ∈ V (G) and x ∈ V (H1). Let W be a resolving set of H2(a) ∪ H3(a) ∪ · · · ∪ Hk(a). Note that, for a
vertex u ∈ V (Hi) and v ∈ V (H) \ V (Hi) where i ∈ {1, 2, . . . , k}, d((a, u), (a, v)) = 2. So, r((a, x) | W ) = (2, 2, . . . , 2).
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If every vertex y ∈ V (Hj) with j ∈ {2, 3, . . . , k} satisfies r((a, y) | W ) ≠ (2, 2, . . . , 2) then we can choose W (a) = W as
a resolving set of H(a). Otherwise, let y ∈ V (H2) ∪ V (H3) ∪ · · · ∪ V (Hk) satisfies r((a, y) | W ) = (2, 2, . . . , 2). So, we can
chooseW (a) = W ∪ {(a, y)} as a resolving set of H(a).

For m ≥ 2, suppose that there exists a ∈ V (G) such that W (a) contains at most m − 2 vertices of H1(a) ∪ H2(a) ∪ · · · ∪

Hm(a). Let x and y be two distinct vertices of H1(a) ∪ H2(a) ∪ · · · ∪ Hm(a) which are not elements of W (a). We obtain two
situations.
1. For z ∈ H(a) \ {x, y}, we obtain d(z, x) = 2 = d(z, y).
2. For any vertex b ∈ V (G) \ {a}, if z ∈ H(b), then by Proposition 1, d(z, x) = d(z, y).
From both situations, we obtain that r(x | W ) = r(y | W ), a contradiction. �

Next, we consider Hi (a) and H (b) with ab ∈ E (G) and i ∈ {1, 2, . . . , k}. By the definition of G ◦ H , every vertex of H (b)
is adjacent to all vertices of Hi (a). Now, we consider the induced subgraph from one vertex of H (b) and all vertices of Hi (a)
which is isomorphic to a joint graph Hi + K1. We will use a basis of Hi + K1 to construct a resolving set of G ◦ H . In order
to do so, we show that we can always choose a basis of Hi + K1 which is a subset of the vertex set of Hi. Note that Hi is a
connected graph.

Lemma 3. Let Q be a connected graph. There exists a basis S of Q + K1 such that S ⊆ V (Q ).

Proof. Let V (Q + K1) = V (Q ) ∪ {v} and S be a basis of Q + K1. If v ∉ S we have nothing to prove. Suppose that v ∈ S. We
distinguish two cases.

Case 1: S \ {v} = ∅.
By Theorem 1, Q ∼= K1. We obtain Q + K1 ∼= P2. Chartrand et al. [3] and Khuller et al. [11] showed that β (P2) = 1 where

the vertex in a basis is one of P2’s end points. Since Q + K1 has an end point which is a vertex of Q , we can choose a basis S ′

of Q + K1 such that v ∉ S ′.
Case 2: S \ {v} ≠ ∅.
We define B = V (Q + K1) \ S. Let r = |V (Q + K1) \ S| and B = {b1, b2, . . . , br}. For t ∈ {1, 2, . . . , r}, we

define a vertex set St = (S ∪ {bt}) \ {v} and Bt = B \ {bt}. If there exists t ∈ {1, 2, . . . , r} such that every u ∈ Bt
satisfies r(u|St) ≠ (1, 1, . . . , 1), then the lemma is proved. Otherwise, we have that Q + K1 is isomorphic to a complete
graph. Chartrand et al. [3] has proved that the metric dimension of a complete graph Kn is n − 1. Then we can choose
S ′

= V (Q + K1) \ {v} as a basis of Q + K1. �

For 1 ≤ i ≤ k, let Bi be a basis of Hi + K1 such that Bi ⊆ V (Hi). From Lemma 3, for a ∈ V (G), choose a vertex set
W (a) =


1≤i≤k Wi where Wi = {(a, x)|x ∈ Bi}. In most cases, W (a) resolves all vertices of H(a). In Lemma 4, we give a

condition forW (a) which is not a resolving set of H(a).

Lemma 4. For k ≥ 1 and i ∈ {1, 2, . . . , k}, let a ∈ V (G), Bi be a basis of Hi + K1 such that Bi ⊆ V (Hi), and W (a) =
1≤i≤k Wi(a) where Wi(a) = {(a, x)|x ∈ Bi}. For x, y ∈ V (H), r((a, x) | W (a)) = r((a, y) | W (a)) if and only if x ∈ V (Hi)

and y ∈ V (Hj) and r(x | Bi) = (2, 2, . . . , 2) and r(y | Bj) = (2, 2, . . . , 2) where i ≠ j.

Proof. (⇐) Since r(x | Bi) = (2, 2, . . . , 2) and r(y | Bj) = (2, 2, . . . , 2), we obtain that r((a, x) | Wi(a)) = (2, 2, . . . , 2)
and r((a, y) | Wj(a)) = (2, 2, . . . , 2). Note that, for every p, q ∈ {1, 2, . . . , k} and p ≠ q, every vertices u ∈ V (Hp(a)) and
v ∈ V (Hq(a)) satisfy d(u, v) = 2. Therefore, we obtain r((a, x) | W (a)) = (2, 2, . . . , 2) = r((a, y) | W (a)).

(⇒) For 1 ≤ i ≤ k, since Bi is a basis of Hi + K1, then every two distinct vertices u, v ∈ Hi(a) satisfy r(u | Wi(a)) ≠ r(v |

Wi(a)). Therefore, since r((a, x) | W (a)) = r((a, y) | W (a)), we obtain that (a, x) ∈ V (Hi(a)) and (a, y) ∈ V (Hj(a)) where
i ≠ j, which implies x ∈ V (Hi) and y ∈ V (Hj).

Now, suppose that r(x | Bi) ≠ (2, 2, . . . , 2) or r(y | Bj) ≠ (2, 2, . . . , 2). So, there exists a vertex u ∈ Bi or v ∈ Bj such that
ux, yv ∈ E(H). Therefore, d((a, u), (a, x)) = 1 and d((a, v), (a, y)) = 1. Since d((a, u), (a, y)) = 2 and d((a, v), (a, x)) = 2,
we obtain that r((a, x) | W (a)) ≠ r((a, y) | W (a)), a contradiction. �

If the condition in Lemma 4 occurs then we must add more vertices on W (a) such that the new set resolves (a, x) and
(a, y).

Lemma 5. Let G be a connected graphwith |V (G)| ≥ 2 andH be an arbitrary graph containing k ≥ 1 componentsH1,H2, . . . ,Hk
and |V (H)| ≥ 2. Let a ∈ V (G) and W be a basis of G ◦ H. If W (a) = W ∩ H(a) and α(a) = |W (a)|, then

α(a) ≤


k

p=1

β(Hp + K1)


+ k − 1.

Proof. For i ∈ {1, 2, . . . , k}, let Bi be a basis of Hi + K1 such that Bi ⊆ V (Hi). From Lemma 3, choose a vertex set
W1 =


1≤i≤k Wi(a) where Wi(a) = {(a, x)|x ∈ Bi}. We distinguish two cases.

1. G ◦ H does not satisfy the conditions in Lemma 4.
Then choose W (a) = W1. Since Bi is a basis of Hi + K1 for 1 ≤ i ≤ k, then Wi(a) resolves V (Hi(a)), which implies

W (a) resolves V (H(a)). Therefore, α(a) =
k

p=1 β(Hp + K1) ≤

k
p=1 β(Hp + K1)


+ k − 1.
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2. G ◦ H satisfies the conditions in Lemma 4.
Let S = {(a, x) | (a, x) ∈ V (Hi(a)), r((a, x) | Wi(a)) = (2, 2, . . . , 2), i ∈ {1, 2, . . . , k}}. Note that |S| ≤ k. Let z ∈ S.

We defineW2 = S \ {z}. ChooseW (a) = W1 ∪ W2. SinceWi(a) resolves V (Hi(a)) for 1 ≤ i ≤ k andW2 resolves S, then
we obtain thatW (a) resolves V (H(a)). Therefore, α(a) ≤

k
p=1 β(Hp + K1)


+ k − 1. �

For a ∈ V (G), letW (a) be a resolving set ofH(a). By considering Proposition 1, chooseW =


a∈V (G) W (a). In most cases,
W is a resolving set of G ◦ H . In Lemma 6, we give a condition forW which is not a resolving set of G ◦ H .

We consider two different vertices u, v ∈ V (G). Let PG(u, v) be a shortest u− v path in G and ℓ(PG(u, v)) be the length of
PG(u, v). We define PG(u, v) = {PG(u, v)}. Let z be a vertex in V (G) \ V (PG(u, v)). If ℓ(PG(u, v))+ ℓ(PG(v, z)) > ℓ(PG(u, z))
and ℓ(PG(u, v)) + ℓ(PG(u, z)) > ℓ(PG(v, z)), then each path in PG(u, v) is called an eccentric path of G.

Lemma 6. Let a, b ∈ V (G) and W =


a∈V (G) W (a) where W (a) is a resolving set of H(a). For x, y ∈ V (H), r((a, x) | W ) =

r((b, y) | W ) if and only if r((a, x) | W (a)) = (2, 2, . . . , 2), r((b, y) | W (b)) = (2, 2, . . . , 2), and each shortest a − b path is
an eccentric path of length 2.

Proof. (⇒) Suppose that r((a, x) | W (a)) ≠ (2, 2, . . . , 2) or r((b, y) | W (b)) ≠ (2, 2, . . . , 2) or each shortest a − b path
is an eccentric path of length m ≠ 2. By using Lemma 3, there is no vertex z in H which has a representation (1, 1, . . . , 1)
with respect to a basis of H + K1. Now, we consider two cases.

1. r((a, x) | W (a)) ≠ (2, 2, . . . , 2) or r((b, y) | W (b)) ≠ (2, 2, . . . , 2).
For either ab ∈ E(G) and ab ∉ E(G), r((a, x) | W (a)) ≠ r((b, y) | W (a)), which implies r((a, x) | W ) ≠ r((b, y) | W ),

a contradiction.
2. Each shortest a − b path is an eccentric path of lengthm ≠ 2.

If m = 1 then r((a, x) | W (a)) ≠ r((b, y) | W (a)). Otherwise, there exists c ∈ V (G) such that bc ∈ E(G) and
ac ∉ E(G), which implies r((a, x) | W (c)) ≠ r((b, y) | W (c)). In both situations,weobtain r((a, x) | W ) ≠ r((b, y) | W ),
a contradiction.

(⇐) Let S = {c ∈ V (G) | ac, cb ∈ E(G)}. For every v ∈ V (G) \ (S ∪ {a, b}), we have av, bv ∉ E(G). Since
G is a connected graph, for u ∈ {a, b}, there exists c ∈ S such that the shortest u − v path contains c. It follows
d(u, v) = d(u, c) + d(c, v). Note that, for z ∈ V (H(v)), d((a, x), (v, z)) = d(u, v) = d((b, y), (v, z)). Since d(a, b) = 2, we
obtain r((a, x) | W ) = r((b, y) | W ). �

If the condition in Lemma 6 occurs then wemust addmore vertices onW such that the new set resolves (a, x) and (b, y).

Lemma 7. Let G be a connected graphwith |V (G)| ≥ 2 andH be an arbitrary graph containing k ≥ 1 componentsH1,H2, . . . ,Hk
and |V (H)| ≥ 2. If |V (G)| = n, then

β(G ◦ H) ≤ n ·


k

p=1

β(Hp + K1)


+ k − 1


+ (n − 2).

Proof. For a ∈ V (G), let W (a) be a resolving set of H(a). By considering Proposition 1, choose a vertex set W1 =


a∈V (G)

W (a). We distinguish two cases.

1. G ◦ H does not satisfy the condition in Lemma 6.
Then chooseW = W1. SinceW (a) resolves H(a) for every a ∈ V (G), we obtain thatW is a resolving set of G ◦ H and

by Lemma 5,

|W | ≤ n ·


k

p=1

β(Hp + K1)


+ k − 1



≤ n ·


k

p=1

β(Hp + K1)


+ k − 1


+ (n − 2).

2. G ◦ H satisfies the condition in Lemma 6.
From Lemma 6, we define S1 =


a∈V (G) S(a) where S(a) = {b ∈ V (G) | each shortest a − b path is an eccentric path

of length 2}. Note that |S1| ≤ n − 1. Let S2 = {(b, x) | b ∈ S1 and r((b, x) | W (b)) = (2, 2, . . . , 2)}. Let z ∈ S2. We define
W2 = S2 \ {z}. Then choose a vertex setW = W1 ∪W2. SinceW (a) resolves H(a) for every a ∈ V (G) andW2 resolves S2,
we obtain thatW is a resolving set of G ◦ H and by Lemma 5, |W | ≤ n ·

k
p=1 β(Hp + K1)


+ k − 1


+ (n − 2). �

Combining the results in Lemmas 1, 2 and 7, we obtain the following bounds of β(G ◦ H).
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Theorem 2. Let G be a connected graph with |V (G)| ≥ 2 and H be an arbitrary graph containing k ≥ 1 components
H1,H2, . . . ,Hk and |V (H)| ≥ 2. If |V (G)| = n, then

n ·


k

p=1

β(Hp)


− 1


≤ β(G ◦ H) ≤ n ·


k

p=1

β(Hp + K1)


+ k − 1


+ (n − 2).

In the next two subsections, we prove that the lower and upper bounds in Theorem 2 are sharp.

2.1. H is a disconnected graph

In the next two theorems, we prove the existence of a connected graph G and a disconnected graph H where the metric
dimension of G ◦ H satisfies either the lower or upper bounds in Theorem 2.

Theorem 3. There exists a connected graph G of order n ≥ 2 and a graph H containing k ≥ 2 components H1,H2, . . . ,Hk such
that

β(G ◦ H) = n ·


k

p=1

β(Hp)


− 1


.

Proof. Let G be a path of n vertices Pn where n ≥ 4, and H be a null graph (graph without edges) of k vertices where k ≥ 2.
By Theorem 2, we only need to show that β(G ◦ H) ≤ n ·

k
p=1 β(Hp)


− 1


.

Let V (G) = {p1, p2, . . . , pn} where pipi+1 ∈ E(G) for 1 ≤ i ≤ n − 1, and V (H) = {q1, q2, . . . , qk}. We define
W = V (G ◦ H) \ G(qk). We will show thatW is a resolving set of G ◦ H . Note that,
1. d((pi, qk), (pj+1, q1)) ≠ d((pj, qk), (pj+1, q1)) for 1 ≤ i ≤ j ≤ n − 1.
2. d((pn, qk), (pi−1, q1)) ≠ d((pi, qk), (pi−1, q1)) for 2 ≤ i ≤ n − 1.
3. d((p1, qk), (p2, q1)) ≠ d((pn, qk), (p2, q1)).
Therefore, since r(u | W ) ≠ r(v | W ) for every two distinct vertices u, v ∈ V (G ◦ H), W is a resolving set of G ◦ H . �

Theorem 4. There exists a connected graph G of order n ≥ 2 and a graph H containing k ≥ 2 components H1,H2, . . . ,Hk such
that

β(G ◦ H) = n ·


k

p=1

β(Hp + K1)


+ k − 1


+ (n − 2).

Proof. Let G be a star of n vertices Sn−1 where n ≥ 4, and H be a graph containing k ≥ 2 components H1,H2, . . . ,Hk
where Hi is a path of 8 vertices P8 for 1 ≤ i ≤ k. By Theorem 2, we only need to show that β(G ◦ H) ≥ n ·k

p=1 β(Hp + K1)


+ k − 1


+ (n − 2). Note that P8 + K1 is a fan graph with 9 vertices. Caceres et al. [2] have proved

that β(P8 + K1) =
 2·8+2

5


= 3. If B is a basis of P8 + K1, then there exists a vertex y ∈ V (P8) such that r(y | B) = (2, 2, 2).

Suppose that β(G ◦ H) ≤ n ·

k
p=1 β(Hp + K1)


+ k − 1


+ (n − 3). Let W be a basis of G ◦ H . Then there exist two

distinct leaves a, b ∈ V (G) such that each leaf contributes at most
k

p=1 β(Hp + K1)


+ k − 1 vertices in W . Let c be the
center vertex of G. Note that, for every vertex z ∈ V (G) \ {a, b, c}, d(z, u) = d(z, c) + d(c, u) for u ∈ {a, b}. Since PG(a, b) is
an eccentric path of length 2 and d((u, y), (z, w)) = d(u, z) for w ∈ V (H), we obtain that r((a, y) | W ) = r((b, y) | W ), a
contradiction. �

The graph in the proof of Theorem 4 satisfies the condition in Lemmas 4 and 6. In particular, in Theorems 5 and 6 we give
an example of graphs with metric dimension n ·

k
p=1 β(Hp + K1)


+ k − 1


and n ·

k
p=1 β(Hp + K1)


, respectively.

Theorem 5. There exists a connected graph G of order n ≥ 2 and a graph H containing k ≥ 2 components H1,H2, . . . ,Hk such
that

β(G ◦ H) = n ·


k

p=1

β(Hp + K1)


+ k − 1


.

Proof. Let G be a complete graph of n vertices Kn and H be a graph containing k ≥ 2 components H1,H2, . . . ,Hk where Hi
is a cycle of 8 vertices C8 for 1 ≤ i ≤ k. Note that G ◦ H does not satisfy the condition in Lemma 6. We need to show that
β(G ◦ H) = n ·

k
p=1 β(Hp + K1)


+ k − 1


. The C8 + K1 is a wheel graph with 9 vertices. Buczkowski et al. [1] have

proved that β(C8 + K1) = 3. If B is a basis of C8 + K1, then there exists a vertex y ∈ V (C8) such that r(y | B) = (2, 2, 2).
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For 1 ≤ i ≤ k, let Bi be a basis of Hi + K1 where Bi ⊆ V (Hi). For a ∈ V (G), let S1(a) = {(a, y) | y ∈ V (Hi); r(y |

Bi) = (2, 2, 2); 1 ≤ i ≤ k}. Let Wi(a) = {(a, x) | x ∈ Bi} and for a vertex z ∈ S1(a), let S2(a) = S1(a) \ {z}. We define
W (a) = S2(a) ∪


1≤i≤k Wi(a). Since Wi(a) resolves Hi(a) and S2(a) resolves S1(a), we obtain that W (a) is a resolving set

of H(a) and |W (a)| =

k
p=1 β(Hp + K1)


+ k − 1. By considering Proposition 1, W =


a∈V (G) W (a) is a resolving set of

G ◦ H and |W | = n ·

k
p=1 β(Hp + K1)


+ k − 1


.

Now, suppose that β(G ◦ H) ≤ n ·

k
p=1 β(Hp + K1)


+ k − 1


− 1. Let W be a basis of G ◦ H . Then there exists

a vertex a ∈ V (G) such that H(a) contributes at most
k

p=1 β(Hp + K1)


+ k − 2 vertices in W . For 1 ≤ i ≤ k, let
Wi(a) = W ∩ Hi(a). If there exists i ∈ {1, 2, . . . , k} such that |Wi(a)| < β(C8 + K1), then there exist two vertices
x, y ∈ Hi(a) such that r(x | Wi(a)) = r(y | Wi(a)), which implies r(x | W ) = r(y | W ), a contradiction. So, for every
i ∈ {1, 2, . . . , k}, we assume that |Wi(a)| ≥ β(C8 +K1). Therefore, there exist two different components Hi and Hj such that
|Wi(a)| = β(C8 + K1) = |Wj(a)|. Let x ∈ V (Hi) and y ∈ V (Hj) where r((a, x) | Wi(a)) = (2, 2, 2) = r((a, y) | Wj(a)). By
Lemma 4, we obtain that r((a, x) | W ) = r((a, y) | W ), a contradiction. �

Theorem 6. There exists a connected graph G of order n ≥ 2 and a graph H containing k ≥ 2 components H1,H2, . . . ,Hk such
that

β(G ◦ H) = n ·


k

p=1

β(Hp + K1)


.

Proof. Let G be a complete graph of n vertices Kn and H be a graph containing k ≥ 2 components H1,H2, . . . ,Hk where Hi
is a path of 4 vertices P4. Note that G ◦ H does not satisfy the conditions in Lemmas 4 and 6. The P4 + K1 is a fan graph with
5 vertices. Caceres et al. [2] have proved that β(P4 + K1) = 2.

For 1 ≤ i ≤ k, let Bi be a basis of Hi +K1 where Bi ⊆ V (Hi). For a ∈ V (G), letWi(a) = {(a, x) | x ∈ Bi}. We defineW (a) =
1≤i≤k Wi(a). SinceWi(a) resolves Hi(a), we obtain thatW (a) is a resolving set of H(a) and |W (a)| =

k
p=1 β(Hp + K1). By

considering Proposition 1,W =


a∈V (G) W (a) is a resolving set of G ◦ H and |W | = n ·

k
p=1 β(Hp + K1)


.

Now, suppose that β(G ◦ H) ≤ n ·

k
p=1 β(Hp + K1)


− 1. Let S be a basis of G ◦ H . Then there exists a vertex a ∈ V (G)

such that H(a) contributes at most
k

p=1 β(Hp + K1)


− 1 vertices in S. For 1 ≤ i ≤ k, let Si(a) = S ∩ Hi(a). Then
there exists i ∈ {1, 2, . . . , k} such that |Si(a)| < β(P4 + K1). Therefore, there exist two vertices x, y ∈ Hi(a) such that
r(x | Wi(a)) = r(y | Wi(a)), which implies r(x | W ) = r(y | W ), a contradiction. �

An interesting question is whether all the values between the lower and the upper bounds are achievable, as stated in
the following problem.

Problem 1. Let H be a graph containing k ≥ 2 components H1,H2, . . . ,Hk. For every integer c with

n ·


k

p=1

β(Hp)


− 1


< c < n ·


k

p=1

β(Hp + K1)


+ k − 1


+ (n − 2),

does there exist a connected graph G of order n such that β (G ◦ H) = c?

2.2. H is a connected graph

For H is a connected graph with |V (H)| ≥ 2, then H is not a singleton component and k = 1. So, G ◦ H does not satisfy a
condition in Lemma 2. Therefore, combining the results in Lemmas 1 and 7, we obtain the following bounds of β(G ◦ H).

Theorem 7. Let G and H be connected graphs with |V (G)| ≥ 2 and |V (H)| ≥ 2. If |V (G)| = n, then

n · β(H) ≤ β(G ◦ H) ≤ n · β(H + K1) + (n − 2).

In the next two theorems, we prove the existence of connected graphs G and H where the metric dimension of G ◦ H
satisfies either the lower or upper bounds in Theorem 7.

Theorem 8. There exist connected graphs G of order n ≥ 2 and H of order at least 2 such that β (G ◦ H) = n · β (H).

Proof. Let G be an arbitrary connected graph and H be a graph with diameter at most 2. Generally, for a graph H with
diameter at most 2, the metric dimension of G ◦ H is equal to the lower bound of Theorem 7 since two distinct vertices
x, y ∈ V (H) and a vertex a ∈ V (G) satisfy d (x, y) = d ((a, x) , (a, y)). Therefore, for every a ∈ V (G), H (a) contributes at
least β (H) vertices in a basis of G ◦ H . �
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Theorem 9. There exist connected graphs G of order n ≥ 2 and H of order at least 2 such that β (G ◦ H) = n · β (H + K1) +

(n − 2).

Proof. LetH ∼= P8 be a pathwith 8 vertices andG ∼= Sn−1 be a starwith n verticeswith n ≥ 3. By Theorem7,we only need to
show that β (G ◦ H) ≥ n ·β (H + K1)+(n−2). TheH+K1 graph is a fan graphwith 9 vertices. Caceres et al. [2] have proved
that β(P8 + K1) =

 2·8+2
5


= 3. If B is a basis of H + K1, then there exists a vertex y ∈ V (H) such that r(y | B) = (2, 2, 2).

Suppose that β (G ◦ H) ≤ n · β (H + K1) + (n − 3). Let W be a basis of G ◦ H . Then there exist two distinct leaves
a, b ∈ V (G) such that each leaf contributes at most β(H + K1) vertices in W . Let c ∈ V (G) be the center vertex of G. Note
that every vertex z ∈ V (G) \ {a, b, c} satisfies d(z, u) = d(z, c) + d(c, u) for u ∈ {a, b}. Since a− b path is an eccentric path
of length 2 and d((z, w), (u, y)) = d(z, u) for w ∈ V (H), we obtain that r((a, y) | W ) = r((b, y) | W ), a contradiction. �

Note that the graph in the proof of Theorem 9 satisfies the condition in Lemma 6. In particular, in Theorem 10 we have
an example of graphs G ◦ H with metric dimension n · β(H + K1).

Theorem 10. There exist connected graphs G of order n ≥ 2 and H of order at least 2 such that β(G ◦ H) = n · β(H + K1).

Proof. Let H ∼= Pm be a path withm ≥ 7 vertices and G ∼= Pn be a path with n ≥ 4 vertices. Note that G ◦ H does not satisfy
the condition in Lemma 6. We need to show that β(G ◦ H) = n · β(H + K1). The H + K1 graph is a fan graph with m + 1
vertices. Caceres et al. [2] have proved that β(Pm + K1) =

 2m+2
5


.

Let B be a basis of H + K1. From Lemma 3, choose a vertex setW =


v∈V (G) W (v) whereW (v) = {(v, x) | x ∈ B}. Since
for every v ∈ V (G), W (v) resolves H(v), then by considering Proposition 1, W is a resolving set of G ◦ H . Therefore,
β(G ◦ H) ≤ n · β(H + K1).

Now, suppose that β(G ◦ H) ≤ n · β(H + K1) − 1. Let S be a basis of G ◦ H . Then there exists a vertex a ∈ V (G) such that
H(a) contributes β(H + K1) − 1 vertices in S. So, there exist two vertices x, y ∈ V (H) such that r((a, x) | S) = r((a, y) | S),
a contradiction. Therefore, β(G ◦ H) ≥ n · β(H + K1). �

We can also show that there exist graphs G and H such that the metric dimension of G ◦ H is not equal to both the lower
and upper bounds in Theorem 7.

Theorem 11. There exist connected graphs G of order n ≥ 2 and H of order at least 2 such that β (G ◦ H) = c where
n · β (H) < c < n · β (H + K1) + (n − 2).

Proof. Let G ∼= Kn be a complete graph with n ≥ 2 vertices and H ∼= Km be a complete graph with m ≥ 2 vertices. Since
G ◦ H ∼= Kmn, we have β (G ◦ H) = mn − 1 (see [3]). Since H + K1 ∼= Km+1, we obtain n · β (H) < nm − 1 <
n · β (H + K1) + (n − 2). �

An interesting question is whether all the values between the lower and the upper bounds are achievable, as stated in
the following problem.

Problem 2. Let H be a connected graph of order at least 2. For every integer c with n ·β (H) < c < n ·β (H + K1)+ (n−2),
does there exist a graph G of order n such that β (G ◦ H) = c?
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