Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Large bipartite Cayley graphs of given degree and diameter

Tomáš Vetrík^{a,*}, Rinovia Simanjuntak^b, Edy Tri Baskoro^b

^a School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
^b Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia

ARTICLE INFO

ABSTRACT

Article history: Received 6 February 2010 Received in revised form 19 October 2010 Accepted 23 October 2010 Available online 16 November 2010 Let $BC_{d,k}$ be the largest possible number of vertices in a bipartite Cayley graph of degree dand diameter k. We show that $BC_{d,k} \ge 2(k-1)((d-4)/3)^{k-1}$ for any $d \ge 6$ and any even $k \ge 4$, and $BC_{d,k} \ge (k-1)((d-2)/3)^{k-1}$ for $d \ge 6$ and $k \ge 7$ such that $k \equiv 3 \pmod{4}$. © 2010 Elsevier B.V. All rights reserved.

Keywords: Cayley graph Bipartite graph Degree Diameter

The problem of determining the largest graphs of given maximum degree and diameter is known as the degree–diameter problem. For a detailed survey on the problem we refer the reader to [5]. In this note we focus on bipartite Cayley graphs of given degree and diameter. Let $B_{d,k}$ denote the largest order of a bipartite graph of maximum degree d and diameter k, and let $BC_{d,k}$ be the largest number of vertices in a bipartite Cayley graph of degree d and diameter k.

Biggs [2] showed that the number of vertices in a bipartite graph of degree d and diameter k cannot exceed the bipartite Moore bound $M_{d,k} = 2((d-1)^k - 1)/(d-2)$ for $d \ge 3$, and the bound 2k for d = 2. Exact values of $B_{d,k}$ and $BC_{d,k}$ are available only in rare cases. For example, it is easy to see that for $d, k \ge 2$, we have $B_{2,k} = 2k$ and $B_{d,2} = 2d$. The graphs of order 2k are the 2k-cycles and the graphs of order 2d are the complete bipartite graphs $K_{d,d}$. Since both cycles and complete bipartite graphs with partite sets of equal size are Cayley graphs, $BC_{2,k} = 2k$ and $BC_{d,2} = 2d$ as well. It is also known that $B_{d,k}$ is equal to the bipartite Moore bound if k = 3, 4, 6 and d - 1 is a prime power; see [1,2].

Improvements on the upper bound for $B_{d,k}$ can be seen in the recent papers of Pineda-Villavicencio [6] and Delorme et al. [4]. Pineda-Villavicencio [6] proved that there exist no bipartite graphs of order $M_{d,k} - 2$ for any $d \ge 3$ and $k \ge 4$, which yields the bound $B_{d,k} \le M_{d,k} - 4$ for any $d \ge 3$ and $k \ge 5$ with $k \ne 6$. There are no general upper bounds on $BC_{d,k}$ better than the upper bounds for $B_{d,k}$.

For the largest known bipartite graphs of degree d and diameter k for small d and k, see [8]. The orders of known constructions of bipartite graphs for large d and k are significantly lower than the bipartite Moore bound. Bond and Delorme [3] presented large bipartite graphs of given degree and diameter using their concept of a partial Cayley graph. By suppressing edge directions in constructions of directed graphs of Vetrík [7], one has the general lower bound $BC_{d,k} \ge (k-1)((d-1)/4)^{k-1}$ for any $k \ge 4$ and any even $d \ge 8$.

We give bipartite Cayley graphs larger than bipartite graphs coming from constructions of [7]. First, let us present a family of bipartite Cayley graphs of degree $d \equiv 0 \pmod{3}$.

Theorem 1. Let $d \ge 6$ be a multiple of 3.

(i) For any even $k \ge 4$, we have $BC_{d,k} \ge 2(k-1)(d/3)^{k-1}$.

(ii) For $k \ge 7$ such that $k \equiv 3 \pmod{4}$, we have $BC_{d,k} \ge (k-1)(d/3)^{k-1}$.

* Corresponding author. E-mail addresses: tomas.vetrik@gmail.com (T. Vetrík), rino@math.itb.ac.id (R. Simanjuntak), ebaskoro@math.itb.ac.id (E.T. Baskoro).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter s 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.10.015

Proof. Let *H* be a group of order m > 2 with unit element ι and let H^{k-1} be the product $H \times H \times \cdots \times H$, where *H* appears k-1 times. Denote by α the automorphism of the group H^{k-1} such that $\alpha(x_1, x_2, \ldots, x_{k-1}) = (x_{k-1}, x_1, x_2, \ldots, x_{k-2})$. This means that α shifts coordinates by one to the right. The cyclic group of order t will be denoted by Z_t and the semidirect product $H^{k-1} \rtimes Z_t$ will be denoted by G. (Note that G is the semidirect product of N and A, written as $G = N \rtimes A$, if N is a normal subgroup of G, A is a subgroup of G, and every element of G can be written as a unique product of an element of N and an element of A.) Multiplication in G is given by $(x, y)(x', y') = (x\alpha^y(x'), y + y')$, where $x, x' \in H^{k-1}, y, y' \in Z_t$ and α^y is the composition of α with itself y times. We will write elements of G in the form $(x_1, x_2, \ldots, x_{k-1}; y)$, where $x_1, x_2, \ldots, x_{k-1} \in H$ and $y \in Z_t$.

(i) Let $k \ge 4$ be even and t = 2(k-1). Let $a_g = (g, \iota, \ldots, \iota; 1)$ for any $g \in H$. Then $a_g^{-1} = (\iota, \ldots, \iota, g^{-1}; -1)$. Further, for any $h \in H$ let $b_h = (\iota, \ldots, \iota, h, \iota, \ldots, \iota; k-1)$, where $x_{k/2} = h$ and $x_j = \iota$ for $1 \le j \le k - 1, j \ne k/2$. Let $X = \{a_g, a_g^{-1}, b_h$ for all $g, h \in H\}$. Since $b_h^{-1} = b_{h^{-1}}$, it is clear that $X = X^{-1}$. The Cayley graph C(G, X) is of degree

d = |X| = 3m and order $|G| = 2(k-1)m^{k-1} = 2(k-1)(d/3)^{k-1}$. We prove that the diameter of C(G, X) is $\leq k$, which is equivalent to showing that each element of G can be expressed as a product of at most k elements of X.

We show that any element $(x_1, x_2, \ldots, x_{k-1}; y)$, where $x_1, x_2, \ldots, x_{k-1} \in H$ and $y \in Z_{2(k-1)}$, y is odd, can be obtained as a product of k - 1 elements of X. Let $0 \le r \le k/2 - 1$. Let

$$S = (\Pi_{i=1}^{k/2-r} a_{x_i})(\Pi_{j=1}^r b_{x_{j+k-r-1}} a_{x_{j+k/2-r}})(\Pi_{\ell=k/2+1}^{k-r-1} a_{x_\ell})$$

and

$$S' = (\Pi_{i=1}^{k/2-r} a_{x_i}^{-1})(\Pi_{j=1}^r b_{x_{j+k-r-1}}^{-1} a_{x_{j+k/2-r}}^{-1})(\Pi_{\ell=k/2+1}^{k-r-1} a_{x_\ell}^{-1}).$$

It can be checked that $S = (x_1, x_2, ..., x_{k-1}; 2k - 2 - r)$ if r is odd, and $S = (x_1, x_2, ..., x_{k-1}; k - 1 - r)$ if r is even. Then $S' = (x_{k-1}^{-1}, x_{k-2}^{-1}, \dots, x_1^{-1}; r)$ if *r* is odd, and $S' = (x_{k-1}^{-1}, x_{k-2}^{-1}, \dots, x_1^{-1}; k - 1 + r)$ if *r* is even. Any element $(x_1, x_2, \dots, x_{k-1}; y + 1)$ can be expressed as follows:

 $(x_1, x_2, \ldots, x_{k-1}; y+1) = (x_1, x_2, \ldots, x_{k-1}; y)a_i$

None of the elements $(x_1, x_2, \ldots, x_{k-1}; y)$ where all $x_i \neq i, 1 \leq i \leq k-1$, can be obtained as a product of fewer than k-1elements of X; therefore none of the elements $(x_1, x_2, \ldots, x_{k-1}; y+1)$ can be obtained as a product of fewer than k elements of X. The diameter of C(G, X) is exactly k.

Since the last coordinate of any element in the generating set X is odd, no two different vertices $(x_1, x_2, \ldots, x_{k-1}; y)$ and $(x'_1, x'_2, \dots, x'_{k-1}; y')$ of C(G, X) are adjacent if either both y, y' are even or both y, y' are odd $(y, y' \in Z_{2(k-1)})$ and $x_i, x'_i \in H, 1 \le i \le k - 1$). It follows that the graph C(G, X) is bipartite.

(ii) Let $k \ge 7$ such that $k \equiv 3 \pmod{4}$ and t = k - 1. The semidirect product $H^{k-1} \rtimes Z_{k-1}$ will be denoted by G'. For any $g, h \in H$ let $\overline{a_g} = (g, \iota, ..., \iota; 1)$ and $b_h = (\iota, ..., \iota, h, \iota, ..., \iota, h; (k-1)/2)$, where $x_s = h$ for s = (k-1)/2 and s = k-1. It is evident that $b_h^{-1} = b_{h^{-1}}$. Let $X' = \{a_g, a_g^{-1}, b_h; g, h \in H\}$. The Cayley graph C(G', X') is of degree d = |X'| = 3m and order $|G'| = (k-1)m^{k-1} = k^{k-1}$.

 $(k-1)(d/3)^{k-1}$. In order to prove that the diameter of C(G', X') is equal to k it is enough to show that any element $(x_1, x_2, \ldots, x_{k-1}; y)$, where $x_i \in H$, $1 \le i \le k-1$ and $y \in Z_{k-1}$, y is even, can be expressed as a product of k-1 elements of X'. If r = 0, 2, ..., (k - 3)/2, we have

$$\begin{aligned} (x_1, x_2, \dots, x_{k-1}; k-1-r) &= (\Pi_{i=1}^{(k-1)/2-r} a_{x_i}) (\Pi_{j=1}^{r/2} a_{x_{2j+(k-3)/2-r} x_{2j+k-r-2}^{-1}} b_{x_{2j+k-r-2}} a_{x_{2j+(k-1)/2-r}} b_{x_{2j+(k-1)/2-r}} b_{x_{2j+(k-1)/2-r$$

Elements of G' with the last coordinate r, where $r \in \{2, 4, \dots, (k-3)/2\}$, can be obtained as inverses of the above ones. The diameter of C(G', X') is k and it can be easily checked that C(G', X') is bipartite. \Box

We modify the generating set given in the previous proof to get lower bounds on $BC_{d,k}$ for any $d \ge 6$.

Theorem 2. Let d > 6 be an integer.

(i) If k > 4 is even, then $BC_{d,k} > 2(k-1)((d-4)/3)^{k-1}$. (ii) If $k \ge 7$ such that $k \equiv 3 \pmod{4}$, then $BC_{d,k} \ge (k-1)((d-2)/3)^{k-1}$.

Proof. We use the notation of the proof of Theorem 1.

(i) By Theorem 1, $BC_{d,k} \ge 2(k-1)(d/3)^{k-1}$ for $d = 3m, m \ge 2$ and for any even $k \ge 4$. Let u, v be two different elements of *G* with an odd last coordinate such that $u, v \notin X, u \neq u^{-1}$ and $v \neq v^{-1}$. It is clear that such elements exist. Let $X_1 = X \cup \{u, u^{-1}\}$ and $X_2 = X \cup \{u, u^{-1}, v, v^{-1}\}$. Then, the Cayley graph $C(G, X_1)$ is bipartite, $C(G, X_1)$ has degree $d = |X_1| = 3m + 2$, diameter at most k and order $|G| = 2(k-1)m^{k-1} = 2(k-1)((d-2)/3)^{k-1}$. The bipartite Cayley graph $C(G, X_2)$ is of degree $d = |X_2| = 3m + 4$ and order $2(k - 1)((d - 4)/3)^{k-1}$.

Moreover, if *m* is even, the group *G* must contain an involution other than the identity, say *z*, not appearing in *X*. Let $X_3 = X \cup \{z\}$. The Cayley graph $C(G, X_3)$ is bipartite of degree $d = |X_3| = 3m + 1$, diameter at most k and order $|G| = 2(k-1)((d-1)/3)^{k-1}$. Thus, $BC_{d,k} \ge 2(k-1)((d-4)/3)^{k-1}$ for any $d \ge 6$ and any even $k \ge 4$.

(ii) From Theorem 1 it follows that $BC_{d,k} \ge (k-1)(d/3)^{k-1}$ if $d \ge 6$ is a multiple of 3 and $k \equiv 3 \pmod{4}$, $k \ge 7$. Let z, u be

elements of *G'* with an odd last coordinate such that $z, u \notin X'$, the order of *z* is 2 and the order of *u* is greater than 2. Note that z must be of the form $(x_1, x_2, \ldots, x_{(k-1)/2}, x_1^{-1}, x_2^{-1}, \ldots, x_{(k-1)/2}^{-1}, (k-1)/2)$, where $x_1, x_2, \ldots, x_{(k-1)/2}$ are elements of *H*. Let $X'_1 = X' \cup \{z\}$ and $X'_2 = X' \cup \{u, u^{-1}\}$. Then, the Cayley graph $C(G', X'_1)$ is bipartite, and $C(G', X'_1)$ has degree $d = |X'_1| = 3m + 1$, diameter at most *k* and order $|G'| = (k - 1)m^{k-1} = 2(k - 1)((d - 1)/3)^{k-1}$. The bipartite Cayley graph $C(G', X'_2)$ is of degree d = 3m + 2 and order $(k - 1)((d - 2)/3)^{k-1}$. BC_{d,k} $\ge (k - 1)((d - 2)/3)^{k-1}$ for any $d \ge 6$ and any k > 7 such that $k \equiv 3 \pmod{4}$.

To the best of our knowledge there is no construction of bipartite graphs of order greater than the order of our graphs. Hence, for sufficiently large d and k, our graphs appear to be the largest known bipartite Cayley graphs of degree $d \ge 6$ and diameter k > 4, where $k \not\equiv 1 \pmod{4}$.

References

- [1] J.C. Bermond, C. Delorme, G. Farhi, Large graphs with given degree and diameter II, Journal of combinatorial Theory. Series B 36 (1984) 32-48.
- [2] N.I. Biggs, Algebraic Graph Theory, in: Cambridge Tracts in Mathematics, vol. 67, Cambridge University Press, 1974.
- [3] J. Bond, C. Delorme, A note on partial Cayley graphs, Discrete Mathematics 114 (1–3) (1993) 63–74.
 [4] C. Delorme, L. Jørgensen, M. Miller, G. Pineda-Villavicencio, On bipartite graphs of defect 2, European Journal of Combinatorics 30 (4) (2009) 798–808. [5] M. Miller, J. Širáň, Moore graphs and beyond: a survey of the degree/diameter problem, Electronic Journal of Combinatorics, Dynamic Survey D 14
- (2005).
- [6] G. Pineda-Villavicencio, Non-existence of bipartite graphs of diameter at least 4 and defect 2 (submitted for publication).
- [7] T. Vetrík, Large Cayley digraphs of given out-degree and diameter (submitted for publication).
- [8] Largest known bipartite graphs of given maximum degree and diameter. Available at: http://combinatoricswiki.org/wiki/The_Degree_Diameter_ Problem_for_Bipartite_Graphs.