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Abstract

Let c be a vertex k -coloring on a connected graph G(V, E) . Let Π = {C1, C2, ..., Ck}
be the partition of V (G) induced by the coloring c . The color code cΠ(v) of a vertex v in

G is (d(v, C1), d(v, C2), ..., d(v, Ck)), where d(v, Ci) = min{d(v, x)|x ∈ Ci} for 1 ≤ i ≤ k.

If any two distinct vertices u, v in G satisfy that cΠ(u) 6= cΠ(v), then c is called a locating

k-coloring of G . The locating-chromatic number of G, denoted by χL(G), is the smallest k

such that G admits a locating k -coloring. Let T (n, k) be a complete n -ary tree, namely

a rooted tree with depth k in which each vertex has n children except for its leaves. In this

paper, we study the locating-chromatic number of T (n, k) .
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1. Introduction

The locating-chromatic number of a graph is a combined concept between the coloring
and partition dimension of a graph. The concept of partition dimension of a graph was
introduced by Chartrand et al. [8] in 1998, and subsequently the concept of locating-
chromatic number of a graph was initiated by Chartrand et al. [9] in 2002.

Let G = (V,E) be a connected graph. Let Π = {C1, C2, ..., Ck} be a k -
partition of V (G) . The color code cΠ(v) of vertex v is the ordered k -tuple
(d(v, C1), d(v, C2), ..., d(v, Ck)) , where d(v, Ci) = min{d(v, x)|x ∈ Ci} for 1 ≤ i ≤ k .
If all vertices of G have distinct color codes, then c is called a locating k -coloring of G .
The locating-chromatic number of G , denoted by χL(G) , is the smallest k such that G
has a locating k -coloring.

It is clear that the only graph having the locating-chromatic number 1 and 2 is K1 and
K2 , respectively. The only graph of order n ≥ 3 having the locating-chromatic number
n is the complete multipartite graph. Furthermore, Chartrand et al. [10] characterized
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all graphs of order n with the locating-chromatic number n − 1 . They also gave some
conditions of graph G in which n−2 is an upper bound of its locating-chromatic number.
Recently, Asmiati and Baskoro [1] characterized all graphs containing cycles with locating-
chromatic number 3 .

Chartrand et al. [9] determined the locating-chromatic numbers of cycles. For graph
derived from some graph operations, Baskoro and Purwasih [7] determined the locating-
chromatic number for the corona product of two graphs. Behtoei and Ommoomi studied
the locating-chromatic number for the Cartesian product of graph [5], the join of graphs
[6] and the Kneser graph [4].

For trees, as far as we know, we just have the following results. Chartrand et al. [9]
determined the locating-chromatic numbers of paths and double stars. Furthermore, Char-
trand et al. [10] showed that for any integer k ∈ [3, n], and k 6= n − 1 , there exists a
tree on n vertices with the locating-chromatic number k . Recently, Asmiati et al. de-
termined the locating-chromatic number of firecrackers [2] and an amalgamation of stars
[3]. However, there are many classes of trees whose the locating-chromatic number are
still not known. Thus, in this paper, we determine the locating-chromatic number of some
particular class of trees, namely a complete n -ary tree.

Let us begin to state the following lemma and corollary which are useful to obtain our
main results.

Lemma 1.1. [9] Let c be a locating coloring in a connected graph G . If u and v
are distinct vertices of G such that d(u, w) = d(v, w) for all w ∈ V (G) − {u, v} , then
c(u) 6= c(v) . In particular, if u and v are adjacent to the same vertices, then c(u) 6= c(v) .

Corollary 1.2. [9] If G is a connected graph containing a vertex adjacent to k leaves,
then χL(G) ≥ k + 1 .

2. Main Results

For n, k ≥ 3 , let us denote by T (n, k) a complete n -ary of depth k and each vertex
has n children except for its leaves. The depth of T (n, k) is the length of a path from its
root vertex to its leaves. Therefore, T (n, 1) is a star and T (n, 2) is a lobster.

A graph T (n, k) can be constructed recursively, namely by connecting the root vertices
of the n copies of T (n, k−1) to a new vertex x0 . In this view, The i th copy of T (n, k−1)
in T (n, k) is denoted by T i(n, k − 1) and the i th copy of vertex x of T (n, k − 1) in
T (n, k) is denoted by xi , for i = 1, 2, · · · , n , see Figure 1.

Now, we will show that χL(T (n, 1)) = χL(T (n, 2)) = n + 1 , for any n ≥ 2 , as in the
following theorem.
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Figure 1: Graph T (n, k).

Theorem 2.1. If n ≥ 2 then χL(T (n, 1)) = χL(T (n, 2)) = n + 1 .

Proof. It is clear that χL(T (n, 1)) = n + 1 . Now, let us show that χL(T (n, 2)) = n + 1 .

Let x0 be the root vertex of T (n, 2) . Let L1 = {x1, x2, ..., xn} , L2 = {yij |i, j ∈ [1, n]}
and V (T (n, 2)) = {x0}

⋃
L1

⋃
L2 . To show that χ(T (n, 2)) ≤ n + 1 , define a coloring

c : V (T (n, 2)) → {1, 2, ..., n + 1} such that

c(x0) = 1,

c(xi) = i + 1,

c(Di) = [1, n + 1]\{i + 1}, where Di = {yij |j ∈ [1, n]}.

Let Π = {C1, C2, · · · , Cn+1} be the partition of V (T (n, 2)) induced by c , where Ci is
the set of all vertices receiving color i . Next, we will show that the color codes of all
vertices are distinct. Let u and v be two distinct vertices with c(u) = c(v) . Now, we
consider the following cases:

Case 1. u = x0 , v ∈ L2 .

If v = yir for some i and r then d(u, C) = 1 and d(v, C) = 2 for either C = Ci−1

or C = Ci+1 . Therefore, cΠ(u) 6= cΠ(v) .

Case 2. u ∈ L1 , v ∈ L2 .

If u = xi and v = yjr , for some i , j , r and i 6= j then d(u, C) = 1 and d(v, C) = 2
for either C = Ci−1 or C = Ci+1 . Therefore, cΠ(u) 6= cΠ(v) .
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Case 3. u, v ∈ L2 .

If u = xir and v = xjs , for some i , j , r , s and i 6= j then d(u, Ci+1) = 1 and
d(v, Ci+1) = 2 . Therefore, cΠ(u) 6= cΠ(v) .

Therefore, all vertices have distinct color codes, and so χL(T (n, 2)) ≤ n + 1 . By
Lemma 1.1, we obtain that χL(T (n, 2)) = n + 1 .

Theorem 2.2. If n ≥ 3 then χL(T (n, 3)) = n + 2 .

Proof. Let x0 be the root vertex of T (n, 3). For i = 1, 2, 3 define Li = {v ∈
T (n, 3)|d(v, x0) = i} . Let V (T (n, 3)) = {x0}∪L1∪L2∪L3. Let c be a locating (n+1) -
coloring of T (n, 2) , as defined in Theorem 2.1. For j = 1, 2, · · · , n , let T j(n, 2) be the
j th copy of T (n, 2) in T (n, 3) is denoted by T j(n, k − 1) and xj be the j th copy of
vertex x of T (n, k − 1) in T (n, k) . To show that χ(T (n, 3)) ≤ n + 2 , define a new
coloring c∗ : V (T (n, 3)) → {1, 2, ..., n + 2} such that:

c∗(xi) = (c(x) + (i− 1)) mod n + 2, for 1 ≤ i ≤ n,

c∗(x0) = n + 2.

Let Π∗ = {C1, C2, ..., Cn+2} be the n + 2 -partition of V (T (n, 3)) induced by c∗, where
Ci is the set of all vertices of color i. By the definition of coloring c∗ of T (n, 3) , we obtain
that c∗(x0) = n+2 , the set of the colors of all vertices in T 1(n, 2) is c∗(T 1(n, 2)) = [1, n+
1] and the set of the colors of all vertices in T i(n, 2) is c∗(T i(n, 2)) = [1, n + 2] \ {i− 1},
for any i ∈ [2, n]. Furthermore, c∗(L1) = [1, n] , see Figure 2. Next, we will show that the
color codes of all vertices in T (n, 3) are distinct. Let u and v be two distinct vertices
with c∗(u) = c∗(v) . If one of {u, v} is x0 then it is clear that cΠ∗(u) 6= cΠ∗(v) . Now, if
none of them is the root vertex then consider the following cases:

Case 1. u ∈ La , v ∈ Lb , and a 6= b .

Let a < b . If u, v ∈ V (T i(n, 2)) for some i ∈ [1, n] then d(u, Ci−1 mod n+2) <
d(v, Ci−1 mod n+2) . Thus, cΠ∗(u) 6= cΠ∗(v) . If u ∈ V (T i(n, 2)) , v ∈ V (T j(n, 2)) for
some i < j then d(u, Cj−1 mod n+2) < d(v, Cj−1 mod n+2) . Thus, cΠ∗(u) 6= cΠ∗(v) .

Case 2. u, v ∈ La .

Since all colors of the vertices in L1 are different then a = 2 or 3. If u, v ∈ T i(n, 2) for
some i then a = 3 and cΠ∗(u) 6= cΠ∗(v) , since c is a locating coloring in T (n, 2) . Let
u ∈ T i(n, 2) , v ∈ T j(n, 2) , and i 6= j . Then, one of {i, j} is not equal to 1 . So, we can
assume that j 6= 1 . Thus, d(v, Cj−1) > d(u, Cj−1) . This implies that cΠ∗(u) 6= cΠ∗(v) .

Therefore, in any case, all color codes of the vertices are different, and so χL(T (n, 3)) ≤
n + 2 . Since, there are more than n + 1 vertices having n pendants then χL(T (n, 3)) ≥
n + 2 . This concludes that χL(T (n, 3)) = n + 2 .

Theorem 2.3. If n, k ≥ 3 then χL(T (n, k)) ≤ n + k − 1 .
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Proof. Let x0 be the root vertex of T (n, k) . For i = 1, 2, · · · , k, define Li = {v ∈
T (n, k)|d(v, x0) = i} . Let V (T (n, k)) = {x0}

⋃k
i=1 Li . We are going to prove this theorem

by induction on k . For k = 3 , the theorem holds by Theorem 2.2. Now, assume that the
theorem holds for all l < k . This means that there is a locating (n + k − 2) -coloring of
T (n, k − 1) . Now, we are going to show that there exists a locating (n + k − 1) -coloring
of T (n, k) .

Let c be a locating (n + k− 2) -coloring of T (n, k− 1) with the color of the root is 1.
This coloring is always available by the recursive definition of the coloring as in the proof
of Theorem 2.2. By Theorem 2.2, we have a locating (n + 2) -coloring of T (n, 3) with
c(x0) = n + 2 . Then, add all the colors by 1 (in modulo n + 2 ) to have a desired locating
coloring of T (n, 3) with c(x0) = 1 , and c(L1) = [2, n + 1] . Next, use this coloring and
the definition of c∗ as in the proof of Theorem 2.2 to construct a (n + 3) -coloring of
T (n, 4) with c(x0) = n + 3 . Then, again add all the colors by 1 (in modulo n + 2 ) to
have a desired coloring of T (n, 4) with c(x0) = 1 , and c(L1) = [2, n + 1] , and so forth.
Assume such (n+k−2) -coloring of T (n, k−1) is locating. We shall prove that a coloring
c∗ : V (T (n, k)) → {1, 2, ..., n + k − 1} such that:

c∗(xi) = (c(x) + (i− 1)) mod n + k − 1, for 1 ≤ i ≤ n,

c∗(x0) = n + k − 1,

is also a locating coloring of T (n, k) .

Let Π∗ = {C1, C2, ..., Cn+k−1} be the (n + k − 1) -partition of V (T (n, k)) induced by
c∗, where Ci is the set of all vertices of color i. It is clear that c∗(x0) = n + k − 1 , the
set of the colors of all vertices in T 1(n, k − 1) is [1, n + k − 2] and the set of the colors
of all vertices in T i(n, k − 1) is [1, n + k − 1] \ {i − 1} for 2 ≤ i ≤ n . Furthermore,
c∗(L1) = [1, n] , see Figure 2. Next, we will show that the color codes of all vertices in
T (n, k) are distinct. Let u and v be two distinct vertices with c∗(u) = c∗(v) . If one of
{u, v} is x0 then it is clear that cΠ∗(u) 6= cΠ∗(v) . Now, if none of them is the root vertex
then consider the following cases:

Case 1. u ∈ La , v ∈ Lb , and a 6= b .

Let a < b . If u, v ∈ V (T i(n, k− 1)) for some i ∈ [1, n] then let u, v be the i th copies
of two vertices x, y ∈ V (T (n, k − 1)) , respectively. Since c∗(u) = c(x) + (i − 1) mod
n + k − 1 , c∗(v) = c(y) + (i− 1) mod n + k − 1 , and c∗(u) = c∗(v) , then c(x) = c(y) .
Since c is a locating-coloring in T (n, k − 1) then cΠ(u) 6= cΠ(v) . This implies that
cΠ∗(u) 6= cΠ∗(v) . If u ∈ V (T i(n, k − 1)) , v ∈ V (T j(n, k − 1)) for some i < j then
d(u, Cj−1 mod n+k−1) < d(v, Cj−1 mod n+k−1) . Thus, cΠ∗(u) 6= cΠ∗(v) .

Case 2. u, v ∈ La .

Since all colors of the vertices in L1 are different then a = 2, 3, · · · , k . If u, v ∈
T i(n, k−1) for some i then let u, v be the i th copies of two vertices x, y ∈ V (T (n, k−1)) ,
respectively. Since c∗(u) = c(x)+(i−1) mod n+k−1 , c∗(v) = c(y)+(i−1) mod n+k−1 ,
and c∗(u) = c∗(v) , then c(x) = c(y) . Since c is a locating-coloring in T (n, k − 1) then
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cΠ(u) 6= cΠ(v) . This implies that cΠ∗(u) 6= cΠ∗(v) . Now, let u ∈ T i(n, 2) , v ∈ T j(n, 2) ,
and i 6= j . Then, one of {i, j} is not equal to 1 . So, we can assume that j 6= 1 . Thus,
d(v, Cj−1) > d(u, Cj−1) . This implies that cΠ∗(u) 6= cΠ∗(v) .

Therefore, in any case, all color codes of the vertices are different, and so χL(T (n, k)) ≤
n + k − 1 .

Figure 2: The locating coloring of T (n, 2) and T (n, 3)
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