Far East Journal of Mathematical Sciences (FJMS) © 2014 Pushpa Publishing House, Allahabad, India Published Online: December 2014
Available online at http://pphmj.com/journals/fjms.htm Volume 94, Number 2, 2014, Pages 169-182

THE LOCATING-CHROMATIC NUMBER OF DISCONNECTED GRAPHS

Des Welyyanti*, Edy Tri Baskoro, Rinovia Simanjuntak and Saladin Uttunggadewa

Combinatorial Mathematics Research Division

Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung
Jl. Ganesa 10 Bandung 40132, Indonesia
e-mail: deswelyyanti@students.itb.ac.id
ebaskoro@math.itb.ac.id
rino@math.itb.ac.id
s_uttunggadewa@math.itb.ac.id
*Permanent address:
Faculty of Mathematics and Natural Sciences
Andalas University
Limau Manis, Padang, Indonesia

Abstract

The paper generalizes the notion of locating-chromatic number of a graph such that it can be applied to disconnected graphs as well. In this sense, not all the graphs will have finite locating-chromatic numbers. We derive conditions under which a graph has a finite locating-chromatic number. In particular, we determine the locatingchromatic number of a uniform linear forest, namely a disjoint union of some paths with the same length.

[^0]
1. Introduction

The concept of the locating-chromatic number of graphs introduced by Chartrand et al. [10] is only applied for connected graphs. Many important results have been obtained. For instances, Chartrand et al. [10] determined the locating-chromatic number for cycles and complete multipartite graphs. Furthermore, Chartrand et al. [11] characterized all graphs of order n with the locating-chromatic number $n-1$. In the same paper, Chartrand et al. [11] also gave some conditions for graphs of n vertices under which $n-2$ is an upper bound of its locating-chromatic number. Recently, Asmiati and Baskoro [1] characterized all graphs on n vertices containing cycles with locating-chromatic number 3 .

Some authors also studied the locating-chromatic number for graphs produced by some graph operations. Baskoro and Purwasih [9] determined the locating-chromatic number for the corona product of two graphs. Behtoei and Ommoomi determined the locating-chromatic number for Kneser graph [5], Cartesian product of graph [6] and join of graph [7].

The locating-chromatic number for trees was firstly studied by Chartrand et al. in 2002, by showing such a number for paths and double stars. Furthermore, Chartrand et al. [11] also showed that for any integer $k \in[3, n]$ and $k \neq n-1$, there exists a tree on n vertices with the locating-chromatic number k. Asmiati et al. determined the locating-chromatic number of firecrackers [2] and amalgamation of stars [3]. Welyyanti et al. [8] studied the locating-chromatic number of complete n-ary trees. Recently, Baskoro and Asmiati [4] completed the characterization of all graphs with locatingchromatic number 3 by showing all trees having this number.

In this paper, we extend the definition of locating-chromatic number such that this concept can be applied to all graphs, including disconnected ones. Let c be a k-coloring on a disconnected graph $H(V, E)$. Let $\prod=$ $\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be the partition of $V(H)$ induced by c, where C_{i} is the set of all vertices receiving color i. The color code $c_{\Pi}(v)$ of a vertex $v \in H$
is the ordered k-tuple $\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)$, where $d\left(v, C_{i}\right)=$ $\min \left\{d(v, x) \mid x \in C_{i}\right\}$ and $d\left(v, C_{i}\right)<\infty$ for all $i \in[1, k]$. If all vertices of H have distinct color codes, then c is called a locating k-coloring of H. The locating-chromatic number of H, denoted by $\chi_{L}^{\prime}(H)$, is the smallest k such that H admits a locating-coloring with k colors. If there is no integer k satisfying the above conditions, then we say that $\chi_{L}^{\prime}(H)=\infty$. Note that the locating-chromatic number of a connected graph G is denoted by $\chi_{L}(G)$.

2. Main Results

The following theorem gives the bounds of the locating-chromatic number of a disconnected graph if it is finite.

Theorem 2.1. For each i, let G_{i} be a connected graph and let $H=$ $\bigcup_{i=1}^{m} G_{i}$. If $\chi_{L}^{\prime}(H)<\infty$, then $q \leq \chi_{L}^{\prime}(H) \leq r$, where $q=\max \left\{\chi_{L}\left(G_{i}\right)\right.$: $i \in[1, m]\}$ and $r=\min \left\{\left|V\left(G_{i}\right)\right|: i \in[1, m]\right\}$.

Proof. Since $q=\max \left\{\chi_{L}\left(G_{i}\right) \mid i \in[1, m]\right\}$, there is an integer $k \in[1, m]$ such that $\chi_{L}\left(G_{k}\right)=q$. It means that every locating-coloring of graph H must have at least q colors in every component of H. Therefore, $\chi_{L}^{\prime}(H) \geq q$. Next, we will show the upper bound of $\chi_{L}^{\prime}(H)$. Since $r=\min \left\{\left|G_{i}\right| \mid i \in[1, m]\right\}$, there is an integer $k \in[1, m]$ such that $\chi_{L}\left(G_{k}\right)=r$. It means that every locating-coloring of H must have at most r colors in every component of H. Therefore, $\chi_{L}^{\prime}(H) \leq r$.

For any locating-coloring c of graph H, define a dominant vertex as a vertex with $d(v, S)=1$ if v is not in the color set S under c. The following theorem shows the locating-chromatic number of a disjoint union of s copies of a connected graph G, provided G has exactly one dominant vertex in its every locating-coloring.

Theorem 2.2. Let G be a connected graph with $\chi_{L}(G)=k$ and $H=s G$. Let G has exactly one dominant vertex in its every locatingcoloring. Then $\chi_{L}^{\prime}(H)=k$ if $s \leq k$, otherwise $\chi_{L}^{\prime}(H)=\infty$.

Proof. If $s \leq k$, then $\chi_{L}^{\prime}(G) \geq k$ by Theorem 2.1. (\Rightarrow) Since $\chi_{L}^{\prime}(H)$ $<\infty, \quad \chi_{L}^{\prime}(H)=k$. Let c_{G} be a locating k-coloring of G. Now, define $c_{H}(x)=x+i \bmod k$ if x is in the component G_{i} of $H, i \in[1, s]$. It can be verified that c_{H} is a locating-coloring of H, if $s \leq k$. Now, let $s>k$. Since any locating-coloring of H is also a locating-coloring of G, there are s dominant vertices, a contradiction. Thus, $\chi_{L}^{\prime}(H)=\infty$.

Next, we will determine the locating-chromatic number of a galaxy $H=$ $\bigcup_{i=1}^{t} K_{1, n_{i}}$, where $K_{1, n_{i}}$ is a star for $i \in[1, t]$.

Theorem 2.3. Let $H=\bigcup_{i=1}^{t} K_{1, n_{i}}$ and $n_{i} \geq 2$. Then

$$
\chi_{L}^{\prime}(H)= \begin{cases}n+1, & \text { for } n_{1}=n_{2}=\cdots=n_{t}=n \text { and } t \leq n+1, \\ \infty, & \text { otherwise. }\end{cases}
$$

Proof. By Theorem 2.1, $\chi_{L}^{\prime}(H) \geq q$, where $q=\max \left\{\chi_{L}\left(K_{1, n_{i}}\right): i \in\right.$ $[1, t]\}$. Since $\chi_{L}\left(K_{1, n_{i}}\right)=n_{i}+1, q=\max \left\{n_{i}+1 \mid i \in[1, t]\right\}$. If there is j such that $n_{j}<q$, then $\chi_{L}^{\prime}(H)=\infty$, otherwise (the case of $n_{i}=n$ for all i) the following coloring shows that $\chi_{L}^{\prime}(H)=n+1$.

Let $H=\bigcup_{i=1}^{t} K_{1, n}$ and $V(H)=\left\{x_{i}: i \in[1, t]\right\} \bigcup_{i=1}^{t} A_{i}$, where x_{i} is the root vertex and A_{i} is the set of the end vertices in $K_{1, n_{i}}$. Now, define a coloring $c: V(H) \rightarrow\{1,2, \ldots, n+1\}$ such that

$$
\begin{aligned}
& c\left(x_{i}\right)=i, \\
& \left.c\left(A_{i}\right)=[1, n+1] \backslash i\right\} .
\end{aligned}
$$

Let $\Pi=\left\{C_{1}, C_{2}, \ldots, C_{n+1}\right\}$ be the partition of $V(H)$ induced by c, where C_{i} is set of all vertices receiving color i. Next, we will show that the color codes of all vertices are distinct. Let u and v be two distinct vertices with $c(u)=c(v)$. If $u=x_{i}$ and $v \in A_{j}$ for $i, j \in[1, t]$, then $d(u$, $\left.C_{i+2 \bmod (n+1)}\right)=1$ and $d\left(v, C_{i+2 \bmod (n+1)}\right)=2$. Therefore, $c_{\Pi}(u) \neq c_{\Pi}(v)$. Now, assume $u \in A_{i}$ and $v \in A_{j}$, where $i \neq j$ and $i, j \in[1, t]$. Then $d\left(u, C_{i}\right)=1$ and $d\left(v, C_{i}\right)=2$. Therefore, $c_{\Pi}(u) \neq c_{\Pi}(v)$. Consequently, all vertices have distinct color codes, and so $\chi_{L}^{\prime}(H)=n+1$.

Next, we will determine some necessary conditions for a disjoint union of graphs having finite locating-chromatic number.

Theorem 2.4. Let $H=\bigcup_{i=1}^{m} G_{i}$ be a disconnected graph. If $\chi_{L}^{\prime}(H)<\infty$, then H does not contain any two components G_{i} and G_{j} such that $\chi_{L}\left(G_{i}\right)=\left|G_{i}\right|, \chi_{L}\left(G_{j}\right)=\left|G_{j}\right|$ and $\left|G_{i}\right| \neq\left|G_{j}\right|$.

Proof. For a contradiction, let G_{i} and G_{j} be any two components of H, for some $1 \leq i, j \leq m$ such that $\chi_{L}\left(G_{i}\right)=\left|G_{i}\right|=m, \chi_{L}\left(G_{j}\right)=\left|G_{j}\right|=n$, and $\left|G_{i}\right| \neq\left|G_{j}\right|$. Let $\left|G_{i}\right|<\left|G_{j}\right|$. We have $q=\max \left\{\chi_{L}\left(G_{i}\right) \mid i \in[1, m]\right\}$ $\geq\left|G_{j}\right|$ and $r=\min \left\{\left|G_{i}\right| \mid i \in[1, m]\right\} \leq\left|G_{i}\right|$. So, $\left|G_{j}\right| \leq q \leq \chi_{L}^{\prime}(H) \leq r$ $\leq\left|G_{i}\right|$. It is a contradiction with $\left|G_{i}\right|<\left|G_{j}\right|$. Thus, H does not contain any two components G_{i} and G_{j} such that $\chi_{L}\left(G_{i}\right)=\left|G_{i}\right|, \chi_{L}\left(G_{j}\right)=\left|G_{j}\right|$ and $\left|G_{i}\right| \neq\left|G_{j}\right|$.

Theorem 2.5. Let H be a disconnected graph. If $\chi_{L}^{\prime}(H)<\infty$ and H contains K_{n} as a component, then every other component must be not complete and each component has order at least n.

Proof. Since $\chi_{L}^{\prime}(H)<\infty$ and H contains a K_{n} as a component of H with $\chi_{L}\left(K_{n}\right)=n, \quad \chi_{L}^{\prime}(H) \geq n$. By Theorem 2.4 , every other component
must be not complete. Since $\chi_{L}^{\prime}(H)<\infty$, every other component must have order at least n.

Now, we will study the locating-chromatic number of a linear forest H, namely a disconnected graph with all components are paths.

Theorem 2.6. Let $H=\bigcup_{i=1}^{t} P_{n_{i}}, \quad r=\min \left\{n_{i} \mid i \in[1, t]\right\}$. If $\chi_{L}^{\prime}(H)<\infty$, then $3 \leq \chi_{L}^{\prime}(H) \leq r$. In particular, $\chi_{L}^{\prime}(H)=3$ is only satisfied by $t=1,2$ or 3 .

Proof. The first part is a direct consequence of Theorem 2.1. Now, let us prove the second part. Assume $\chi_{L}^{\prime}(H)=3$. Then $t \leq 3$. Since otherwise, there will be more than 3 dominant vertices, a contradiction. Let $V(H)$ $=V\left(P_{n_{1}}\right) \cup V\left(P_{n_{2}}\right) \cup V\left(P_{n_{3}}\right)$, where $V\left(P_{n_{1}}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}, \quad V\left(P_{n_{2}}\right)=$ $\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$ and $V\left(P_{n_{3}}\right)=\left\{z_{1}, z_{2}, \ldots, z_{n_{3}}\right\}$. Now, consider a coloring $c: V(H) \rightarrow\{1,2,3\}$ such that

$$
\begin{aligned}
& c\left(x_{1}\right)=c\left(y_{2}\right)=c\left(z_{1}\right)=1, \\
& c\left(x_{2}\right)=c\left(y_{1}\right)=c\left(z_{3}\right)=2, \\
& c\left(x_{3}\right)=c\left(y_{3}\right)=c\left(z_{2}\right)=3 ;
\end{aligned}
$$

for $k \in\left[4, n_{1}\right], l \in\left[4, n_{2}\right]$ and $m \in\left[4, n_{3}\right]$, define

$$
\begin{aligned}
& c\left(x_{k}\right)= \begin{cases}2, & \text { if } k \text { is even, } \\
3, & \text { if } k \text { is odd }\end{cases} \\
& c\left(y_{l}\right)= \begin{cases}1, & \text { if } l \text { is even } \\
3, & \text { if } l \text { is odd } ;\end{cases} \\
& c\left(z_{m}\right)= \begin{cases}3, & \text { if } m \text { is even, } \\
2, & \text { if } m \text { is odd }\end{cases}
\end{aligned}
$$

Let $\Pi=\left\{C_{1}, C_{2}, C_{3}\right\}$ be the partition induced by c. Next, we will show that color codes of all vertices are distinct (see Figure 1). It is clear that $c_{\Pi}\left(x_{1}\right)=(0,1,2), \quad c_{\Pi}\left(x_{2}\right)=(1,0,1), \quad c_{\Pi}\left(x_{3}\right)=(2,1,0), \quad c_{\Pi}\left(y_{1}\right)=$ $(1,0,2), c_{\Pi}\left(y_{2}\right)=(0,1,1), c_{\Pi}\left(y_{3}\right)=(1,2,0), c_{\Pi}\left(z_{1}\right)=(0,2,1), c_{\Pi}\left(z_{2}\right)$ $=(1,1,0), c_{\Pi}\left(z_{3}\right)=(2,0,1)$. For $k \in\left[4, n_{1}\right], c_{\Pi}\left(x_{k}\right)=(k-1,0,1)$ if k is even and $c_{\Pi}\left(x_{k}\right)=(k-1,1,0)$ if k is odd. For $l \in\left[4, n_{2}\right], c_{\Pi}\left(y_{l}\right)=$ $(0, l-1,1)$ if l is even and $c_{\Pi}\left(y_{l}\right)=(1, l-1,0)$ if l is odd. For $m \in$ $\left[4, n_{2}\right], c_{\Pi}\left(z_{m}\right)=(m-1,1,0)$ if m is even and $c_{\Pi}\left(z_{m}\right)=(m-1,0,1)$ if m is odd.

Therefore, all vertices have distinct color codes. Consequently, $\chi_{L}^{\prime}(H) \leq 3$. If $t \geq 2$, then restrict the coloring c on the corresponding components. Thus, $\chi_{L}^{\prime}(H)=3$ for $t=1,2$ or 3 .

Figure 1. A locating-coloring of $H=P_{n_{1}} \cup P_{n_{2}} \cup P_{n_{3}}$.

Definition 2.7. Let G be a group and Ω be a generating set. The Cayley graph $\Gamma=\Gamma(G, \Omega)$ is the simple directed graph whose vertex-set and arc-set are defined as follows: $V(\Gamma)=G ; E(\Gamma)=\{(g, g s) \mid s \in \Omega\}$.

Simple verifications show that $E \Gamma$ is well-defined. If $g^{-1} \in \Omega$ for every $g \in \Omega$, then $\Gamma(G, \Omega)$ is an undirected graph.

Theorem 2.8. Let P_{n} be a path on n vertices. Let $H=k P_{n}, k \geq 1$ and $n \geq 4$. If $\chi_{L}^{\prime}(H) \leq n$, then $k \leq \frac{n!}{2^{m}}$, where $m=\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. Let $H=k P_{n}, k \geq 1$ and $n \geq 4$. To get the largest number k, we may assume that $\chi_{L}^{\prime}(H)=n$. Let c be a locating n-coloring of H. Then the locating n-coloring c restricted to any component of H will be a permutation on $\{1,2, \ldots, n\}$. Since c is a locating-coloring of H, the color codes for all vertices in H must be different. Therefore, the largest integer k is equal to the maximum number of n-permutations that can be used to color all the components of H such that the color codes of all vertices in H are different.

Let S_{n} be the symmetric group on $\{1,2, \ldots, n\}$. Write an element $\sigma \in S_{n}$ as the permutation $(\sigma(1) \sigma(2) \cdots \sigma(n))$. Now, let G_{n} be a graph with vertex set $V\left(G_{n}\right)=S_{n}$, where two vertices $\sigma, \tau \in S_{n}$ are adjacent if and only if there exists $i \in[1, n]$ such that $\left|\sigma^{-1}(i)-\sigma^{-1}(j)\right|=\left|\tau^{-1}(i)-\tau^{-1}(j)\right|$ for all $j \in[1, n]$. Then the connected component X_{n} of G_{n} that contains identity permutation is given by

$$
X_{n}= \begin{cases}\left\{\sigma \in S_{n}:(-1)^{\sigma(i)}=(-1)^{i}(1,2, \ldots, n)\right\}, & \text { if } n \text { odd, } \\ \left\{\sigma \in S_{n}:(-1)^{\sigma(i)}=(-1)^{i}(1,2, \ldots, n)\right\} & \\ \bigcup\left\{\sigma \in S_{n}:(-1)^{\sigma(i)}=-(-1)^{i}(1,2, \ldots, n)\right\}, & \text { if } n \text { even. }\end{cases}
$$

In particular,

$$
\left|X_{n}\right|= \begin{cases}m!(m+1)!, & \text { if } n=2 m+1 \\ 2(m!)^{2}, & \text { if } n=2 m\end{cases}
$$

Let Γ_{n} be the induced subgraph of G_{n} on X_{n}. Note that X_{n} is a subgroup of S_{n} and Γ_{n} is a Cayley graph. Let $m=\left\lfloor\frac{n}{2}\right\rfloor$ and $l=\left\lceil\frac{n}{2}\right\rceil$. Then

$$
Q_{n}=\left\{\sigma \in X_{n}:\left|\sigma^{-1}(l)-\sigma^{-1}(j)\right|=|l-j|(j=1,2, \ldots, n)\right\}
$$

is a clique of size 2^{m} that contains the identity permutation. Thus, the independence number $\alpha\left(\Gamma_{n}\right)$ of Γ_{n} satisfies

$$
\alpha\left(\Gamma_{n}\right) \leq \begin{cases}\frac{(m+1)!m!}{2^{m}} & \text { for } n=2 m+1 \\ \frac{(m!)^{2}}{2^{m-1}}, & \text { for } n=2 m\end{cases}
$$

At most one of any two adjacent permutations in Γ_{n} can be used to color one component of H such that all color codes in H are different. Therefore, the number k is bounded by the independence number $\alpha\left(\Gamma_{n}\right)$ times the number of components of G_{n}. This implies that $k \leq \alpha\left(\Gamma_{n}\right) \times \frac{n!}{\left|X_{n}\right|}=\frac{n!}{2^{m}}$, where $m=\left\lfloor\frac{n}{2}\right\rfloor$.

In the following, we will determine the connected component X_{n} of G_{n}. We list the generating set Ω_{n}, the largest clique Q_{n} containing the identity permutation and the independent set A_{n} of $\Gamma_{n}\left(X_{n}, \Omega\right)$ for $n=4,5$, 6 and 7, as shown in Tables 1-4.

Table 1. The Ω_{4}, Q_{4} and A_{4} of $\Gamma_{4}\left(X_{4}, \Omega_{4}\right)$

$n=4$	$\left\|X_{4}\right\|=8$
X_{4}	$\{(1234),(3214),(1432),(3412),(4321),(4123),(2341),(2143)\}$
Ω_{4}	$\{(3214),(1432),(2341),(4123),(4321)\}$
Q_{4}	$\{(1234),(3214),(4321),(4123)\}$
A_{4}	$\{(1234),(3412)\}$

Table 2. The Ω_{5}, Q_{5} and A_{5} of $\Gamma_{5}\left(X_{5}, \Omega_{5}\right)$
\(\left.$$
\begin{array}{|c|l|}\hline n=5 & \left|X_{5}\right|=12 \\
\hline X_{5} & \begin{array}{c}\{(12345),(32145),(14325),(12543),(54321),(34125), \\
(14523),(52341),(34521),(54123),(32541),(52143)\}\end{array} \\
\hline \Omega_{5} & \begin{array}{c}\{(32145),(14325),(12543),(52341),(34521), \\
(54123),(54321)\}\end{array}
$$

\hline Q_{5} \& \{(12345),(14325),(52341),(54321)\}\end{array}\right\}\)| \{(12345),(34125),(14523)\} |
| :--- |
| A_{5} |

Next, the Cayley graphs Γ_{n} for $n=4,5$ can be seen in Figures 2 and 3.

Figure 2. The Cayley graph Γ_{4}.

Figure 3. The Cayley graph Γ_{5}.

For $n=6$ and 7 , Tables 3 and 4 give the generating set Ω_{n}, the largest clique Q_{n} and the largest independent set A_{n} of $\Gamma_{n}\left(X_{n}, \Omega_{n}\right)$.

Table 3. The Ω_{6}, Q_{6} and A_{6} of $\Gamma_{6}\left(X_{6}, \Omega_{6}\right)$

$n=6$	$\left\|X_{6}\right\|=72$
Ω_{6}	$\{(321456),(143256),(125436),(123654),(523416)$, $(163452),(612345),(234561),(654123),(456321)$, $(652341),(634521),(654321)\}$
Q_{6}	$\{(123456),(143256),(523416),(543216),(654321)$, $(652341),(614325),(612345)\}$
A_{6}	$\{(123456),(143652),(163254),(325416),(345612)$, $(365214),(521436),(541632),(561234)\}$

Table 4. The Ω_{7}, Q_{7} and A_{7} of $\Gamma_{7}\left(X_{7}, \Omega_{7}\right)$

$n=7$	$\left\|X_{7}\right\|=144$
Ω_{7}	$\begin{aligned} & \{(3214567),(1432567),(1254367),(1236547),(1234765), \\ & (5234167),(1634527),(7234561),(1274563),(3456721), \\ & (7612345),(5674321),(7654123),(7652341), \\ & (7456321),(7654321)\} \end{aligned}$
Q_{7}	$\begin{aligned} & \{(1234567),(1654327),(1254367),(7254361), \\ & (7234561),(7634521),(1634527),(7654321)\} \end{aligned}$
A_{7}	$\begin{aligned} & \{(1234567),(1436527),(1632547),(3254167),(3456127), \\ & (3652147),(5234761),(5436721),(5632741),(1254763), \\ & (1456723),(1652743),(5214367),(5416327),(5612347), \\ & (3214765),(3416725),(3612745)\} \end{aligned}$

Theorem 2.9. Let P_{4} be a path on 4 vertices. If $H=k P_{4}$, then

$$
\chi_{L}^{\prime}(H)= \begin{cases}3, & \text { for } 1 \leq k \leq 3 \\ 4, & \text { for } 4 \leq k \leq 6, \\ \infty, & \text { otherwise }\end{cases}
$$

Proof. By Theorem 2.6, $\chi_{L}^{\prime}(H)=3$, for $1 \leq k \leq 3$ and $\chi_{L}^{\prime}(H) \geq 4$, for $k \geq 4$. By Theorem 2.8, $\chi_{L}^{\prime}(H) \leq 4$, for $n \leq 6$. Therefore, $\chi_{L}^{\prime}(H)=4$, for $4 \leq k \leq 6$ and $\chi_{L}^{\prime}(H)=\infty$ if $k \geq 7$. The locating-coloring of $k P_{4}$, for $k=4,5$ or 6 , can be taken from Figure 4:

Figure 4. The locating 4-coloring of $H=6 P_{4}$.

Theorem 2.10. Let P_{5} be a path on 5 vertices. If $H=k P_{5}$, then

$$
\chi_{L}^{\prime}(H)= \begin{cases}3, & \text { for } 1 \leq k \leq 3 \\ 4, & \text { for } 4 \leq k \leq 7 \\ 4 \text { or } 5, & \text { for } 8 \leq k \leq 30 \\ \infty, & \text { otherwise }\end{cases}
$$

Proof. By Theorem 2.6, $\chi_{L}^{\prime}(H)=3$, for $1 \leq k \leq 3$ and $\chi_{L}^{\prime}(H) \geq 4$, for $k \geq 4$. Since we can have the locating 4-coloring on $k P_{5}$ for $k=4,5,6$ or 7 as shown in Figure 5, $\chi_{L}^{\prime}(H)=4$, for $4 \leq k \leq 7$. By Theorem 2.8, if $\chi_{L}^{\prime}(H) \leq 5$, then $n \leq 30$. Therefore, we have $\chi_{L}^{\prime}(H)=4$ or 5 , for $8 \leq$ $k \leq 30$.

Figure 5. The locating 4-coloring of $H=7 P_{5}$.

Acknowledgment

We are thankful to Dr. Hajime Tanaka for a fruitful discussion on the independence number of certain Cayley graphs.

This research was supported by the Directorate General of Higher Education (DGHE), Ministry of Education and Culture, by Research Grant "International Research Collaboration and Scientic Publication" 2014.

References

[1] Asmiati and E. T. Baskoro, Characterizing all graphs containing cycles with locating-chromatic number 3, AIP Conf. Proc. 1450, 2012, pp. 351-357.
[2] Asmiati, E. T. Baskoro, H. Assiyatun, D. Suprijanto, R. Simanjuntak and S. Uttunggadewa, Locating-chromatic number of firecracker graphs, Far East J. Math. Sci. (FJMS) 63(1) (2012), 11-23.
[3] Asmiati, H. Assiyatun and E. T. Baskoro, Locating-chromatic number of amalgamation of stars, ITB J. Sci. 43A(1) (2011), 1-8.
[4] E. T. Baskoro and Asmiati, Characterizing all trees with locating-chromatic number 3, Electronic Journal of Graph Theory and Applications 1(2) (2013), 109-117.
[5] A. Behtoei and B. Ommoomi, On the locating chromatic number of Kneser graphs, Discrete Appl. Math. 159 (2011), 2214-2221.
[6] A. Behtoei and B. Ommoomi, On the locating-chromatic number of the Cartesian product of graphs, Ars Combin., to appear.
[7] A. Behtoei and B. Ommoomi, The locating-chromatic number of the join of graphs, Discrete Appl. Math., to appear.
[8] Des Welyyanti, E. T. Baskoro, R. Simanjuntak and S. Uttunggadewa, On locatingchromatic number of complete n-ary tree, AKCE Int. J. Graphs Comb. 10(3) (2013), 309-315.
[9] E. T. Baskoro and I. A. Purwasih, The locating-chromatic number of corona product of graph, Southeast Asian Journal of Sciences 1(1) (2011), 126-136.
[10] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, The locatingchromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89-101.
[11] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, Graph of order n with locating-chromatic number $n-1$, Discrete Math. 269 (2003), 65-79.

[^0]: Received: August 1, 2014; Accepted: September 16, 2014
 2010 Mathematics Subject Classification: 05C12, 05C15.
 Keywords and phrases: locating-chromatic number, disconnected, forest.

