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Abstract

The paper generalizes the notion of locating-chromatic number of a
graph such that it can be applied to disconnected graphs as well.
In this sense, not all the graphs will have finite locating-chromatic
numbers. We derive conditions under which a graph has a finite
locating-chromatic number. In particular, we determine the locating-
chromatic number of a uniform linear forest, namely a disjoint union
of some paths with the same length.
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1. Introduction

The concept of the locating-chromatic number of graphs introduced by
Chartrand et al. [10] is only applied for connected graphs. Many important
results have been obtained. For instances, Chartrand et al. [10] determined
the locating-chromatic number for cycles and complete multipartite graphs.
Furthermore, Chartrand et al. [11] characterized all graphs of order n with
the locating-chromatic number n — 1. In the same paper, Chartrand et al. [11]
also gave some conditions for graphs of n vertices under which » — 2 is an
upper bound of its locating-chromatic number. Recently, Asmiati and
Baskoro [1] characterized all graphs on n vertices containing cycles with

locating-chromatic number 3.

Some authors also studied the locating-chromatic number for graphs
produced by some graph operations. Baskoro and Purwasih [9] determined
the locating-chromatic number for the corona product of two graphs. Behtoei
and Ommoomi determined the locating-chromatic number for Kneser graph
[5], Cartesian product of graph [6] and join of graph [7].

The locating-chromatic number for trees was firstly studied by Chartrand
et al. in 2002, by showing such a number for paths and double stars.
Furthermore, Chartrand et al. [11] also showed that for any integer k € [3, n]
and £ # n —1, there exists a tree on n vertices with the locating-chromatic

number k. Asmiati et al. determined the locating-chromatic number of
firecrackers [2] and amalgamation of stars [3]. Welyyanti et al. [8] studied
the locating-chromatic number of complete n-ary trees. Recently, Baskoro
and Asmiati [4] completed the characterization of all graphs with locating-
chromatic number 3 by showing all trees having this number.

In this paper, we extend the definition of locating-chromatic number
such that this concept can be applied to all graphs, including disconnected
ones. Let ¢ be a k-coloring on a disconnected graph H(V, E). Let H:
{C, Cy, ..., Ci} be the partition of V(H) induced by ¢, where C; is the

set of all vertices receiving color i. The color code crj(v) of a vertex v e H
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is the ordered k-tuple (d(v, Cy), d(v, Cy), ..., d(v, C})), where d(v, C;) =
min{d(v, x)|x € C;} and d(v, C;) < oo for all i € [l, k]. If all vertices of H
have distinct color codes, then c is called a locating k-coloring of H. The

locating-chromatic number of H, denoted by y7(H), is the smallest k such

that H admits a locating-coloring with & colors. If there is no integer &

satisfying the above conditions, then we say that y; (H) = c. Note that the

locating-chromatic number of a connected graph G is denoted by ¥ (G).

2. Main Results

The following theorem gives the bounds of the locating-chromatic

number of a disconnected graph if it is finite.

Theorem 2.1. For each i, let G; be a connected graph and let H =
U;n:l G;. If y1(H) <o, then q <y (H)<r, where q = max{y;(G;):

i €[l, m]} and r = min{| V(G;)|:i € [1, m]}.

Proof. Since g = max{y;(G;)|i € [1, m]}, there is an integer k € [1, m]
such that 7 (G;) = ¢. It means that every locating-coloring of graph H must
have at least g colors in every component of H. Therefore, ¥7 (H) > g. Next,
we will show the upper bound of ¥ (H). Since r = min{ G; ||i € [, m]},
there is an integer k € [I, m] such that y;(Gy) = r. It means that every

locating-coloring of H must have at most » colors in every component of H.
Therefore, x7 (H) < r. O

For any locating-coloring ¢ of graph H, define a dominant vertex as a
vertex with d(v, S) =1 if v is not in the color set S under c. The following
theorem shows the locating-chromatic number of a disjoint union of s copies
of a connected graph G, provided G has exactly one dominant vertex in its

every locating-coloring.
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Theorem 2.2. Let G be a connected graph with y¥;(G)=k and
H =s5G. Let G has exactly one dominant vertex in its every locating-

coloring. Then ¥7(H) = k if s < k, otherwise y'1(H) = .

Proof. If s <k, then %7(G) >k by Theorem 2.1. (=) Since x7(H)
<o, y7(H)=k. Let ¢ be a locating k-coloring of G. Now, define
cp(x) = x +imodk if x is in the component G; of H, i € [l, s]. It can be
verified that ¢y is a locating-coloring of H, if s < k. Now, let s > k. Since

any locating-coloring of H is also a locating-coloring of G, there are s

dominant vertices, a contradiction. Thus, 7 (H) = . O

Next, we will determine the locating-chromatic number of a galaxy H =

¢ . .
Uilel’”i’ where K, isastar for i €[, £].

Theorem 2.3. Let H = U§:1K1,ni and n; 2 2. Then

n+l, forn =ny=--=n,=nandt<n+l,

X,L(H):{

© otherwise.

Proof. By Theorem 2.1, %7(H)2 g, where g = max{y(Kj ,):ie€
[1, ]}. Since 1 (Ky ) =n; +1, g =max{n; +1]|i € [1, ¢]}. If there is j such
that n; < g, then yj(H) = o, otherwise (the case of n; = n for all i) the

following coloring shows that ¥7 (H) = n + 1.

Let H = U§:1 Ky, and V(H)={x; i e[l, t]}Uizl 4;, where x; is the
root vertex and 4; is the set of the end vertices in K ,.. Now, define a
coloring ¢ : V(H) — {1, 2, ..., n + 1} such that

c(xi) =1,

o(4) =1, n+ 1\
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Let IT = {C}, C,, ..., C,,1} be the partition of V(H) induced by c,
where C; is set of all vertices receiving color i. Next, we will show

that the color codes of all vertices are distinct. Let # and v be two distinct

vertices with c(u) = c(v). If u = x; and v e 4; for i, j € [l, ¢], then d(u,
Civamod(n+1)) =1 and d(v, Ci12mod(n+1)) = 2. Therefore, cry(u) # crp(v).
Now, assume u € 4; and ve 4;, where i# j and i, j €[l, ¢]. Then
d(u, C;) =1 and d(v, C;) = 2. Therefore, crj(u)# crp(v). Consequently,

all vertices have distinct color codes, and so ¥7 (H) =n+1. [l

Next, we will determine some necessary conditions for a disjoint union
of graphs having finite locating-chromatic number.

Theorem 2.4. Let H = ULGI- be a disconnected graph. If ¥ (H) < o,
then H does not contain any two components G; and G; such that
1(G) =1G; |, x1(G;) =|G; | and | G; | #| G |.

Proof. For a contradiction, let G; and G; be any two components of /1,
for some 1 <4, j <m such that x;(G;) =|G;|=m, 1 (G;)=|G;|=n,
and |G; | #| G, | Let | G; | <| G} |. We have g = max{y,(G;)|i € [l, m]}
>|G; | and r =min{ G;||i €I, m]} <|G;|. So, |G; |<q <y (H)<r
<|G;|. It is a contradiction with | G; | <| G, |. Thus, H does not contain
any two components G; and G; such that x;(G;) =|G; |, %.(G;)=|G; |
and | G; | #| G, |. O

Theorem 2.5. Let H be a disconnected graph. If y7(H) < © and H

contains K, as a component, then every other component must be not

complete and each component has order at least n.

Proof. Since y7(H) < o and H contains a K, as a component of H

with y;(K,) =n, y%7(H)>n. By Theorem 2.4, every other component
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must be not complete. Since y;(H) < oo, every other component must have

order at least n. O
Now, we will study the locating-chromatic number of a linear forest H,
namely a disconnected graph with all components are paths.
t . . '
Theorem 2.6. Let H = Ul_:1 P, r=min{n;|ie[l,¢]}. If 7 (H) <o,

then 3 < 71 (H) < r. In particular, y; (H) = 3 is only satisfied by t =1, 2

or 3.

Proof. The first part is a direct consequence of Theorem 2.1. Now, let us

prove the second part. Assume 7 (H) = 3. Then ¢ < 3. Since otherwise,
there will be more than 3 dominant vertices, a contradiction. Let V(H)
= V(Pn1 YU V(Pn2 YU V(Pn3 ), where V(Pnl) = {x1, X2, ..ry Xy }s V(Pnz) =
1, 2, o Yy} and V(By,) = {21, 23, ..., 2,5} Now, consider a coloring
c: V(H)— {1, 2, 3} such that

c(x) = clyp) = c(z1) = 1,

c(xy) = c(n) = e(z3) = 2,

c(x3) = c(y3) = c(z2) = 3;

for k €[4, nj], [ €[4, ny] and m € [4, n3], define

() 2, if kiseven,
C\X =
1703, if ks odd;

1, ifliseven,

cy)) =
2 {3, if /s odd:;

(2) 3, if miseven,
cz,,) =
"2, if misodd,
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Let IT = {C}, C5, C3} be the partition induced by c. Next, we will
show that color codes of all vertices are distinct (see Figure 1). It is clear
that crp(x) =(0,1,2), enq(x)=(10,1), enqlx;)=(210), eq()=
(1,0,2), en(y2)=(0,11), en(y3)=(1,2,0), c(z) =(0, 2, 1), cr(z2)
=(1,1,0), cq(z3)=(2,0,1). For k €[4, n], crq(xz) =(k—-1,0,1) if k
is even and cpy(x;)=(k—1,1,0) if k is odd. For [ €[4, ny], c(y;) =
(0,/-1,1) if [ is even and cp(y;) = (1,1 —1,0) if [ is odd. For m e
[4, ny], crp(z,,) =(m—1,1,0) if mis even and c(z,,) = (m—1,0,1) if m
is odd.

Therefore, all vertices have distinct color codes. Consequently,
7 (H)<3. If t>2, then restrict the coloring ¢ on the corresponding

components. Thus, 37 (H) =3 for t =1, 2 or 3.

1 2 3 2 3 2 3
Or L Or O O--——0—0
2 1 3 3 1 3 1
O ® O o . O----0—20
1 3 2 3 2 g 3
O @ O O-===-=0 O )]

2
O
Figure 1. A locating-coloring of H = 5, UF,, UR,,.

[l

Definition 2.7. Let G be a group and () be a generating set. The Cayley
graph T’ = T'(G, Q) is the simple directed graph whose vertex-set and arc-set
are defined as follows: V(') = G; E(T') = {(g, gs)|s € Q}.

Simple verifications show that ET is well-defined. If g_1 e Q for
every g € Q, then I'(G, Q) is an undirected graph.
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Theorem 2.8. Let P, be a path on n vertices. Let H = kP,, k =21 and

!
n>4. If Y1 (H) < n, then k S%, where m = L%J
2

Proof. Let H = kP,, k >1 and n > 4. To get the largest number &, we
may assume that 7 (H) = n. Let ¢ be a locating n-coloring of H. Then the

locating n-coloring c¢ restricted to any component of H will be a permutation

on {1, 2, ..., n}. Since c is a locating-coloring of H, the color codes for all

vertices in H must be different. Therefore, the largest integer £ is equal to the
maximum number of n-permutations that can be used to color all the
components of H such that the color codes of all vertices in H are different.

Let S, be the symmetric group on {l, 2, ..., n}. Write an element
c € S, as the permutation (c(1)c(2)---o(n)). Now, let G, be a graph with
vertex set V(G,) = S,, where two vertices o, T € S, are adjacent if and
only if there exists i € [1, n] such that |6~ (i))— o1 (j)| = |t 1 () -t ()|
for all j € [l, n]. Then the connected component X, of G, that contains
identity permutation is given by
loes,: (-1)°D = (1) 2, .., ), if n odd,
X, =oes,  (-1)°D = (1), 2, ..., n)}
Ufses, : (-1)°D = (-1¥(1, 2, .., n)}, if n even.
In particular,
m!(m+1), ifn=2m+1,
|Xn | = 2
2(m')~, if n =2m.

Let I, be the induced subgraph of G, on X,. Note that X, is a

subgroup of S,, and I, is a Cayley graph. Let m = {%J and / = [%—l Then

Qn = {G € X, :|G_1(1)_G_l(j)|:|l_j|(j =12, .., I’l)}
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is a clique of size 2™ that contains the identity permutation. Thus, the

independence number o(T,) of T, satisfies

!
(Dt o= 2m 41,
a(T,) <
(m!)’
~— forn = 2m.
2m—1

At most one of any two adjacent permutations in I',, can be used to color

one component of H such that all color codes in H are different. Therefore,

the number & is bounded by the independence number o(l,) times the

! !
number of components of G,. This implies that k& < a(T,) x |)’;—| = %,
n 2
n
where m = LE J [l

In the following, we will determine the connected component X, of
G,. We list the generating set Q,, the largest clique O, containing the
identity permutation and the independent set 4, of T,(X,,, Q) for n =4, 5,

6 and 7, as shown in Tables 1-4.

Table 1. The Q4, Q4 and A4 of F4(X4, Q4)

n=4 | | X4]=38

X, | {(1234), (3214), (1432), (3412), (4321), (4123), (2341), (2143)}

Q, | {(3214), (1432), (2341), (4123), (4321)}

Oy {(1234), (3214), (4321), (4123)}

Ay | {(1234), (3412)}
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Table 2. The Qs, Q5 and A5 of F5(X5, Qs)

l’l=5 |X5|=12

Xs ((12345), (32145), (14325), (12543), (54321), (34125),
(14523), (52341), (34521), (54123), (32541), (52143)}

Qs {(32145), (14325), (12543), (52341), (34521),
(54123), (54321)}

Os ((12345), (14325), (52341), (54321)}

As {(12345), (34125), (14523)}

Next, the Cayley graphs I',, for n = 4, 5 can be seen in Figures 2 and 3.

(1234)

(2341) 4321)

(1432) (4123)

(3214)

(3412)

Figure 2. The Cayley graph I'y4.
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(52143

(12543)

) ,;7”/7 ‘“‘wﬁ/ (12345)

\
%52341 )
—

Figure 3. The Cayley graph T’.
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For n = 6 and 7, Tables 3 and 4 give the generating set QQ,,, the largest

clique Q, and the largest independent set 4, of T,(X,,, Q,).

Table 3. The Q6’ Q6 and A6 of F6(X6, Q6)

| Xo | =72

Qg | {(321456), (143256), (125436), (123654), (523416),
(163452), (612345), (234561), (654123), (456321),
(652341), (634521), (654321)}

Os | {(123456), (143256), (523416), (543216), (654321),
(652341), (614325), (612345)}

A | {(123456), (143652), (163254), (325416), (345612),
(365214), (521436), (541632), (561234)}
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Table 4. The Q7, Q7 and A7 of F7(X7, Q7)

n=7| |X7|=144

Q; | {(3214567), (1432567), (1254367), (1236547), (1234765),
(5234167), (1634527), (7234561), (1274563), (3456721),
(7612345), (5674321), (7654123), (7652341),
(7456321), (7654321)}

0, ((1234567), (1654327), (1254367), (7254361),
(7234561), (7634521), (1634527), (7654321)}

A ((1234567), (1436527), (1632547), (3254167), (3456127),
(3652147), (5234761), (5436721), (5632741), (1254763),
(1456723), (1652743), (5214367), (5416327), (5612347),

(3214765), (3416725), (3612745)}

Theorem 2.9. Let Py be a path on 4 vertices. If H = kPy, then

3, forl1<k<3
x7(H)=14, for 4<k <6,

oo, otherwise.

Proof. By Theorem 2.6, ¥7(H) =3, for 1 < k <3 and y7(H) > 4, for
k > 4. By Theorem 2.8, %7 (H) < 4, for n < 6. Therefore, ¥7(H) = 4, for
4<k<6 and y7(H)=o if k>7. The locating-coloring of kP;, for

k =4, 5 or 6, can be taken from Figure 4:

1 2 4 . ;
O O 3 O cg; 4 3 3)
1 2 4 3 2 1 4 3
C O O Q O O e, O
1 3 2 4

o—0— 56— 0 & & & 3

Figure 4. The locating 4-coloring of H = 6F;.
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Theorem 2.10. Let P5 be a path on 5 vertices. If H = kPs, then

3, for 1<k <3,
, , for 4 <k <7,
X (H) =
4or5,  for8<k <30,
o otherwise.

b

Proof. By Theorem 2.6, ¥7(H) =3, for 1 < k <3 and y7(H) > 4, for
k = 4. Since we can have the locating 4-coloring on kP5 for k =4, 5, 6 or
7 as shown in Figure 5, 7 (H) =4, for 4 <k <7. By Theorem 2.8, if
x7(H) <5, then n <30. Therefore, we have y;(H)=4 or 5, for 8 <
k < 30.

1 2 1 3 4 2 1 4 2 3
o O O O 0 o o o
1 2 3 1 2 3 2 1 4
O b { Ol ' ) O
1 2 4 2 3 1 4 2 4 3
2 1 3 1 4

O O O O O

Figure S. The locating 4-coloring of H = 7F5.
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