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Abstract 

The paper generalizes the notion of locating-chromatic number of a 
graph such that it can be applied to disconnected graphs as well.        
In this sense, not all the graphs will have finite locating-chromatic 
numbers. We derive conditions under which a graph has a finite 
locating-chromatic number. In particular, we determine the locating-
chromatic number of a uniform linear forest, namely a disjoint union 
of some paths with the same length. 
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1. Introduction 

The concept of the locating-chromatic number of graphs introduced by 
Chartrand et al. [10] is only applied for connected graphs. Many important 
results have been obtained. For instances, Chartrand et al. [10] determined 
the locating-chromatic number for cycles and complete multipartite graphs. 
Furthermore, Chartrand et al. [11] characterized all graphs of order n with  
the locating-chromatic number .1−n  In the same paper, Chartrand et al. [11] 
also gave some conditions for graphs of n vertices under which 2−n  is an 
upper bound of its locating-chromatic number. Recently, Asmiati and 
Baskoro [1] characterized all graphs on n vertices containing cycles with 
locating-chromatic number 3. 

Some authors also studied the locating-chromatic number for graphs 
produced by some graph operations. Baskoro and Purwasih [9] determined 
the locating-chromatic number for the corona product of two graphs. Behtoei 
and Ommoomi determined the locating-chromatic number for Kneser graph 
[5], Cartesian product of graph [6] and join of graph [7]. 

The locating-chromatic number for trees was firstly studied by Chartrand 
et al. in 2002, by showing such a number for paths and double stars. 
Furthermore, Chartrand et al. [11] also showed that for any integer [ ]nk ,3∈  

and ,1−≠ nk  there exists a tree on n vertices with the locating-chromatic 
number k. Asmiati et al. determined the locating-chromatic number of 
firecrackers [2] and amalgamation of stars [3]. Welyyanti et al. [8] studied 
the locating-chromatic number of complete n-ary trees. Recently, Baskoro 
and Asmiati [4] completed the characterization of all graphs with locating-
chromatic number 3 by showing all trees having this number. 

In this paper, we extend the definition of locating-chromatic number    
such that this concept can be applied to all graphs, including disconnected 
ones. Let c be a k-coloring on a disconnected graph ( )., EVH  Let ∏=  

{ }kCCC ...,,, 21  be the partition of ( )HV  induced by c, where iC  is the     

set of all vertices receiving color i. The color code ( )vcΠ  of a vertex Hv ∈  
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is the ordered k-tuple ( ) ( ) ( )( ),,...,,,,, 21 kCvdCvdCvd  where ( ) =iCvd ,  

( ){ }iCxxvd ∈|,min  and ( ) ∞<iCvd ,  for all [ ].,1 ki ∈  If all vertices of H 

have distinct color codes, then c is called a locating k-coloring of H. The 
locating-chromatic number of H, denoted by ( ),HLχ′  is the smallest k such 

that H admits a locating-coloring with k colors. If there is no integer k 
satisfying the above conditions, then we say that ( ) .∞=χ′ HL  Note that the 

locating-chromatic number of a connected graph G is denoted by ( ).GLχ  

2. Main Results 

The following theorem gives the bounds of the locating-chromatic 
number of a disconnected graph if it is finite. 

Theorem 2.1. For each i, let iG  be a connected graph and let =H  

∪m
i iG1 .=  If ( ) ,∞<χ′ HL  then ( ) ,rHq L ≤χ′≤  where { ( ) :max iL Gq χ=  

[ ]}mi ,1∈  and ( ) [ ]{ }.,1:min miGVr i ∈=  

Proof. Since ( ) [ ]{ },,1max miGq iL ∈|χ=  there is an integer [ ]mk ,1∈  

such that ( ) .qGkL =χ  It means that every locating-coloring of graph H must 

have at least q colors in every component of H. Therefore, ( ) .qHL ≥χ′  Next, 

we will show the upper bound of ( ).HLχ′  Since [ ]{ },,1min miGr i ∈|=  

there is an integer [ ]mk ,1∈  such that ( ) .rGkL =χ  It means that every 

locating-coloring of H must have at most r colors in every component of H. 
Therefore, ( ) .rHL ≤χ′  ~ 

For any locating-coloring c of graph H, define a dominant vertex as a 
vertex with ( ) 1, =Svd  if v is not in the color set S under c. The following 

theorem shows the locating-chromatic number of a disjoint union of s copies 
of a connected graph G, provided G has exactly one dominant vertex in its 
every locating-coloring. 
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Theorem 2.2. Let G be a connected graph with ( ) kGL =χ  and 

.sGH =  Let G has exactly one dominant vertex in its every locating-
coloring. Then ( ) kHL =χ′  if ,ks ≤  otherwise ( ) .∞=χ′ HL  

Proof. If ,ks ≤  then ( ) kGL ≥χ′  by Theorem 2.1. (⇒) Since ( )HLχ′  

,∞<  ( ) .kHL =χ′  Let Gc  be a locating k-coloring of G. Now, define 

( ) kixxcH mod+=  if x is in the component iG  of [ ].,1, siH ∈  It can be 

verified that Hc  is a locating-coloring of H, if .ks ≤  Now, let .ks >  Since 

any locating-coloring of H is also a locating-coloring of G, there are s 
dominant vertices, a contradiction. Thus, ( ) .∞=χ′ HL  ~ 

Next, we will determine the locating-chromatic number of a galaxy =H  

∪t
i niK1 ,1 ,=  where inK ,1  is a star for [ ].,1 ti ∈  

Theorem 2.3. Let ∪t
i niKH 1 ,1==  and .2≥in  Then 

( )




∞

+≤====+
=χ′

.,

,1,1 21

otherwise

ntandnnnnforn
H t

L  

Proof. By Theorem 2.1, ( ) ,qHL ≥χ′  where { ( ) ∈χ= iKq inL :max ,1  

[ ]}.,1 t  Since ( ) ,1,1 +=χ inL nK i  [ ]{ }.,11max tinq i ∈|+=  If there is j such 

that ,qn j <  then ( ) ,∞=χ′ HL  otherwise (the case of nni =  for all i) the 

following coloring shows that ( ) .1+=χ′ nHL  

Let ∪t
i nKH 1 ,1==  and ( ) [ ]{ }∪t

i ii AtixHV 1 ,,1: =∈=  where ix  is the 

root vertex and iA  is the set of the end vertices in .,1 inK  Now, define a 

coloring ( ) { }1...,,2,1: +→ nHVc  such that 

( ) ,ixc i =  

( ) [ ] { }.\1,1 inAc i +=  
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Let { }121 ...,,, +=Π nCCC  be the partition of ( )HV  induced by c, 

where iC  is set of all vertices receiving color i. Next, we will show           

that the color codes of all vertices are distinct. Let u and v be two distinct 
vertices with ( ) ( ).vcuc =  If ixu =  and jAv ∈  for [ ],,1, tji ∈  then ( ,ud  

( ) ) 11mod2 =++ niC  and ( ( ) ) .2, 1mod2 =++ niCvd  Therefore, ( ) ( ).vcuc ΠΠ ≠  

Now, assume iAu ∈  and ,jAv ∈  where ji ≠  and [ ].,1, tji ∈  Then 

( ) 1, =iCud  and ( ) .2, =iCvd  Therefore, ( ) ( ).vcuc ΠΠ ≠  Consequently, 

all vertices have distinct color codes, and so ( ) .1+=χ′ nHL  ~ 

Next, we will determine some necessary conditions for a disjoint union 
of graphs having finite locating-chromatic number. 

Theorem 2.4. Let ∪m
i iGH 1==  be a disconnected graph. If ( ) ,∞<χ′ HL  

then H does not contain any two components iG  and jG  such that 

( ) ,iiL GG =χ  ( ) jjL GG =χ  and .ji GG ≠  

Proof. For a contradiction, let iG  and jG  be any two components of H, 

for some mji ≤≤ ,1  such that ( ) ( ) ,, nGGmGG jjLiiL ==χ==χ  

and .ji GG ≠  Let .ji GG <  We have ( ) [ ]{ }miGq iL ,1max ∈|χ=  

jG≥  and [ ]{ } .,1min ii GmiGr ≤∈|=  So, ( ) rHqG Lj ≤χ′≤≤  

.iG≤  It is a contradiction with .ji GG <  Thus, H does not contain 

any two components iG  and jG  such that ( ) ,iiL GG =χ  ( ) jjL GG =χ  

and .ji GG ≠  ~ 

Theorem 2.5. Let H be a disconnected graph. If ( ) ∞<χ′ HL  and H 

contains nK  as a component, then every other component must be not 

complete and each component has order at least n. 

Proof. Since ( ) ∞<χ′ HL  and H contains a nK  as a component of H 

with ( ) ,nKnL =χ  ( ) .nHL ≥χ′  By Theorem 2.4, every other component 
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must be not complete. Since ( ) ,∞<χ′ HL  every other component must have 

order at least n. ~ 

Now, we will study the locating-chromatic number of a linear forest H, 
namely a disconnected graph with all components are paths. 

Theorem 2.6. Let ∪t
i niPH 1 ,==  [ ]{ }.,1min tinr i ∈|=  If ( ) ,∞<χ′ HL  

then ( ) .3 rHL ≤χ′≤  In particular, ( ) 3=χ′ HL  is only satisfied by 2,1=t  

or 3. 

Proof. The first part is a direct consequence of Theorem 2.1. Now, let us 
prove the second part. Assume ( ) .3=χ′ HL  Then .3≤t  Since otherwise, 

there will be more than 3 dominant vertices, a contradiction. Let ( )HV  

( ) ( ) ( ),321 nnn PVPVPV ∪∪=  where ( ) { },...,,, 11 21 nn xxxPV =  ( ) =2nPV  

{ }2...,,, 21 nyyy  and ( ) { }....,,, 33 21 nn zzzPV =  Now, consider a coloring 

:c  ( ) { }3,2,1→HV  such that 

( ) ( ) ( ) ,1121 === zcycxc  

( ) ( ) ( ) ,2312 === zcycxc  

( ) ( ) ( ) ;3233 === zcycxc  

for [ ],,4 1nk ∈  [ ]2,4 nl ∈  and [ ],,4 3nm ∈  define 

( )




=
odd; is  if,3
even, is  if,2

k
k

xc k  

( )




=
odd; is  if,3

even, is  if,1

l

l
yc l  

( )




=
odd. is  if,2

even, is  if,3

m

m
zc m  
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Let { }321 ,, CCC=Π  be the partition induced by c. Next, we will   

show that color codes of all vertices are distinct (see Figure 1). It is clear             
that ( ) ( ),2,1,01 =Π xc  ( ) ( ),1,0,12 =Π xc  ( ) ( ),0,1,23 =Π xc  ( ) =Π 1yc  

( ),2,0,1  ( ) ( ),1,1,02 =Π yc  ( ) ( ),0,2,13 =Π yc  ( ) ( ),1,2,01 =Π zc  ( )2zcΠ  

( ),0,1,1=  ( ) ( ).1,0,23 =Π zc  For [ ],,4 1nk ∈  ( ) ( )1,0,1−=Π kxc k  if k 

is even and ( ) ( )0,1,1−=Π kxc k  if k is odd. For [ ],,4 2nl ∈  ( ) =Π lyc  

( )1,1,0 −l  if l is even and ( ) ( )0,1,1 −=Π lyc l  if l is odd. For ∈m  

[ ],,4 2n  ( ) ( )0,1,1−=Π mzc m  if m is even and ( ) ( )1,0,1−=Π mzc m  if m 

is odd. 

Therefore, all vertices have distinct color codes. Consequently, 
( ) .3≤χ′ HL  If ,2≥t  then restrict the coloring c on the corresponding 

components. Thus, ( ) 3=χ′ HL  for 2,1=t  or 3. 

 

Figure 1. A locating-coloring of .321 nnn PPPH ∪∪=  

 ~ 

Definition 2.7. Let G be a group and Ω  be a generating set. The Cayley 
graph ( )ΩΓ=Γ ,G  is the simple directed graph whose vertex-set and arc-set 

are defined as follows: ( ) ( ) ( ){ }.,; Ω∈|=Γ=Γ sgsgEGV  

Simple verifications show that ΓE  is well-defined. If Ω∈−1g  for 

every ,Ω∈g  then ( )ΩΓ ,G  is an undirected graph. 
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Theorem 2.8. Let nP  be a path on n vertices. Let ,nkPH =  1≥k  and 

.4≥n  If ( ) ,nHL ≤χ′  then ,
2

!
m

nk ≤  where .2 



= nm  

Proof. Let ,nkPH =  1≥k  and .4≥n  To get the largest number k, we 

may assume that ( ) .nHL =χ′  Let c be a locating n-coloring of H. Then the 

locating n-coloring c restricted to any component of H will be a permutation 
on { }....,,2,1 n  Since c is a locating-coloring of H, the color codes for all 

vertices in H must be different. Therefore, the largest integer k is equal to the 
maximum number of n-permutations that can be used to color all the 
components of H such that the color codes of all vertices in H are different. 

Let nS  be the symmetric group on { }....,,2,1 n  Write an element 

nS∈σ  as the permutation ( ) ( ) ( )( ).21 nσσσ  Now, let nG  be a graph with 

vertex set ( ) ,nn SGV =  where two vertices nS∈τσ,  are adjacent if and 

only if there exists [ ]ni ,1∈  such that ( ) ( ) ( ) ( )jiji 1111 −−−− τ−τ=σ−σ  

for all [ ].,1 nj ∈  Then the connected component nX  of nG  that contains 

identity permutation is given by 

{ ( ) ( ) ( ) ( )}

{ ( ) ( ) ( ) ( )}

{ ( ) ( ) ( ) ( )}









−−=−∈σ

−=−∈σ

−=−∈σ

=

σ

σ

σ

even. if,...,,2,111:

...,,2,111:

odd, if,...,,2,111:

nnS

nS

nnS

X
ii

n

ii
n

ii
n

n

∪

 

In particular, 

( )

( )





=

+=+
=

.2 if,!2

,12 if,!1!
2 mnm

mnmm
X n  

Let nΓ  be the induced subgraph of nG  on .nX  Note that nX  is a 

subgroup of nS  and nΓ  is a Cayley graph. Let 



= 2

nm  and .2 



= nl  Then 

{ ( ) ( ) ( )}njjljlXQ nn ...,,2,1: 11 =−=σ−σ∈σ= −−  
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is a clique of size m2  that contains the identity permutation. Thus, the 
independence number ( )nΓα  of nΓ  satisfies 

( )

( )

( )










=

+=+

≤Γα

− .2for,
2

!

,12for
2

!!1

1

2
mnm

mnmm

m

m

n  

At most one of any two adjacent permutations in nΓ  can be used to color 

one component of H such that all color codes in H are different. Therefore,   
the number k is bounded by the independence number ( )nΓα  times the 

number of components of .nG  This implies that ( ) ,
2

!!
mn

n
n

X
nk =×Γα≤  

where .2 



= nm  ~ 

In the following, we will determine the connected component nX  of 

.nG  We list the generating set ,nΩ  the largest clique nQ  containing the 

identity permutation and the independent set nA  of ( )ΩΓ ,nn X  for ,5,4=n  

6 and 7, as shown in Tables 1-4. 

Table 1. The 44, QΩ  and 4A  of ( )444 , ΩΓ X  

4=n  84 =X  

4X  {(1234), (3214), (1432), (3412), (4321), (4123), (2341), (2143)} 

4Ω  {(3214), (1432), (2341), (4123), (4321)} 

4Q  {(1234), (3214), (4321), (4123)} 

4A  {(1234), (3412)} 
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Table 2. The 55, QΩ  and 5A  of ( )555 , ΩΓ X  

5=n       125 =X  

5X       {(12345), (32145), (14325), (12543), (54321), (34125), 
       (14523), (52341), (34521), (54123), (32541), (52143)} 

5Ω    {(32145), (14325), (12543), (52341), (34521), 
    (54123), (54321)} 

5Q    {(12345), (14325), (52341), (54321)} 

5A    {(12345), (34125), (14523)} 

Next, the Cayley graphs nΓ  for 5,4=n  can be seen in Figures 2 and 3. 

 

Figure 2. The Cayley graph .4Γ  
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Figure 3. The Cayley graph .5Γ  

For 6=n  and 7, Tables 3 and 4 give the generating set ,nΩ  the largest 

clique nQ  and the largest independent set nA  of ( )., nnn X ΩΓ  

Table 3. The 66, QΩ  and 6A  of ( )666 , ΩΓ X  

6=n     726 =X  

6Ω  {(321456), (143256), (125436), (123654), (523416), 
  (163452), (612345), (234561), (654123), (456321), 
  (652341), (634521), (654321)} 

6Q  {(123456), (143256), (523416), (543216), (654321), 
  (652341), (614325), (612345)} 

6A  {(123456), (143652), (163254), (325416), (345612), 
  (365214), (521436), (541632), (561234)} 
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Table 4. The 77, QΩ  and 7A  of ( )777 , ΩΓ X  

7=n  1447 =X  

7Ω      {(3214567), (1432567), (1254367), (1236547), (1234765), 
      (5234167), (1634527), (7234561), (1274563), (3456721), 
      (7612345), (5674321), (7654123), (7652341), 
      (7456321), (7654321)} 

7Q      {(1234567), (1654327), (1254367), (7254361), 
      (7234561), (7634521), (1634527), (7654321)} 

7A      {(1234567), (1436527), (1632547), (3254167), (3456127), 
      (3652147), (5234761), (5436721), (5632741), (1254763), 
      (1456723), (1652743), (5214367), (5416327), (5612347), 
      (3214765), (3416725), (3612745)} 

Theorem 2.9. Let 4P  be a path on 4 vertices. If ,4kPH =  then 

( )








∞

≤≤

≤≤

=χ′

.,
,64,4
,31,3

otherwise
kfor
kfor

HL  

Proof. By Theorem 2.6, ( ) ,3=χ′ HL  for 31 ≤≤ k  and ( ) ,4≥χ′ HL  for 

.4≥k  By Theorem 2.8, ( ) ,4≤χ′ HL  for .6≤n  Therefore, ( ) ,4=χ′ HL  for 

64 ≤≤ k  and ( ) ∞=χ′ HL  if .7≥k  The locating-coloring of ,4kP  for 

5,4=k  or 6, can be taken from Figure 4: 

 

Figure 4. The locating 4-coloring of .6 4PH =  
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Theorem 2.10. Let 5P  be a path on 5 vertices. If ,5kPH =  then 

( )











∞

≤≤

≤≤

≤≤

=χ′

.,
,308,54

,74,4
,31,3

otherwise
kforor
kfor
kfor

HL  

Proof. By Theorem 2.6, ( ) ,3=χ′ HL  for 31 ≤≤ k  and ( ) ,4≥χ′ HL  for 

.4≥k  Since we can have the locating 4-coloring on 5kP  for 6,5,4=k  or 

7 as shown in Figure 5, ( ) ,4=χ′ HL  for .74 ≤≤ k  By Theorem 2.8, if 

( ) ,5≤χ′ HL  then .30≤n  Therefore, we have ( ) 4=χ′ HL  or 5, for ≤8  

.30≤k  

 

Figure 5. The locating 4-coloring of .7 5PH =  

 ~ 
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